|
#include "arg.h" |
|
#include "common.h" |
|
#include "console.h" |
|
#include "log.h" |
|
#include "sampling.h" |
|
#include "llama.h" |
|
|
|
#include <cassert> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <ctime> |
|
#include <fstream> |
|
#include <iostream> |
|
#include <sstream> |
|
#include <string> |
|
#include <vector> |
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
|
#include <signal.h> |
|
#include <unistd.h> |
|
#elif defined (_WIN32) |
|
#define WIN32_LEAN_AND_MEAN |
|
#ifndef NOMINMAX |
|
#define NOMINMAX |
|
#endif |
|
#include <windows.h> |
|
#include <signal.h> |
|
#endif |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
static llama_context ** g_ctx; |
|
static llama_model ** g_model; |
|
static common_sampler ** g_smpl; |
|
static common_params * g_params; |
|
static std::vector<llama_token> * g_input_tokens; |
|
static std::ostringstream * g_output_ss; |
|
static std::vector<llama_token> * g_output_tokens; |
|
static bool is_interacting = false; |
|
static bool need_insert_eot = false; |
|
|
|
static void print_usage(int argc, char ** argv) { |
|
(void) argc; |
|
|
|
LOG("\nexample usage:\n"); |
|
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]); |
|
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]); |
|
LOG("\n"); |
|
} |
|
|
|
static bool file_exists(const std::string & path) { |
|
std::ifstream f(path.c_str()); |
|
return f.good(); |
|
} |
|
|
|
static bool file_is_empty(const std::string & path) { |
|
std::ifstream f; |
|
f.exceptions(std::ifstream::failbit | std::ifstream::badbit); |
|
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate); |
|
return f.tellg() == 0; |
|
} |
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) |
|
static void sigint_handler(int signo) { |
|
if (signo == SIGINT) { |
|
if (!is_interacting && g_params->interactive) { |
|
is_interacting = true; |
|
need_insert_eot = true; |
|
} else { |
|
console::cleanup(); |
|
LOG("\n"); |
|
common_perf_print(*g_ctx, *g_smpl); |
|
|
|
|
|
LOG("Interrupted by user\n"); |
|
common_log_pause(common_log_main()); |
|
|
|
_exit(130); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) { |
|
common_chat_msg new_msg{role, content}; |
|
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user"); |
|
chat_msgs.push_back({role, content}); |
|
LOG_DBG("formatted: '%s'\n", formatted.c_str()); |
|
return formatted; |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
common_params params; |
|
g_params = ¶ms; |
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
auto & sparams = params.sampling; |
|
|
|
|
|
|
|
console::init(params.simple_io, params.use_color); |
|
atexit([]() { console::cleanup(); }); |
|
|
|
if (params.logits_all) { |
|
LOG_ERR("************\n"); |
|
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); |
|
LOG_ERR("************\n\n"); |
|
|
|
return 0; |
|
} |
|
|
|
if (params.embedding) { |
|
LOG_ERR("************\n"); |
|
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__); |
|
LOG_ERR("************\n\n"); |
|
|
|
return 0; |
|
} |
|
|
|
if (params.n_ctx != 0 && params.n_ctx < 8) { |
|
LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__); |
|
params.n_ctx = 8; |
|
} |
|
|
|
if (params.rope_freq_base != 0.0) { |
|
LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); |
|
} |
|
|
|
if (params.rope_freq_scale != 0.0) { |
|
LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); |
|
} |
|
|
|
LOG_INF("%s: llama backend init\n", __func__); |
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
llama_model * model = nullptr; |
|
llama_context * ctx = nullptr; |
|
common_sampler * smpl = nullptr; |
|
|
|
std::vector<common_chat_msg> chat_msgs; |
|
|
|
g_model = &model; |
|
g_ctx = &ctx; |
|
g_smpl = &smpl; |
|
|
|
|
|
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__); |
|
common_init_result llama_init = common_init_from_params(params); |
|
|
|
model = llama_init.model; |
|
ctx = llama_init.context; |
|
|
|
if (model == NULL) { |
|
LOG_ERR("%s: error: unable to load model\n", __func__); |
|
return 1; |
|
} |
|
|
|
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads); |
|
|
|
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU)); |
|
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new"); |
|
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free"); |
|
|
|
struct ggml_threadpool_params tpp_batch = |
|
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch); |
|
struct ggml_threadpool_params tpp = |
|
ggml_threadpool_params_from_cpu_params(params.cpuparams); |
|
|
|
set_process_priority(params.cpuparams.priority); |
|
|
|
struct ggml_threadpool * threadpool_batch = NULL; |
|
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) { |
|
threadpool_batch = ggml_threadpool_new_fn(&tpp_batch); |
|
if (!threadpool_batch) { |
|
LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads); |
|
return 1; |
|
} |
|
|
|
|
|
tpp.paused = true; |
|
} |
|
|
|
struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp); |
|
if (!threadpool) { |
|
LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads); |
|
return 1; |
|
} |
|
|
|
llama_attach_threadpool(ctx, threadpool, threadpool_batch); |
|
|
|
const int n_ctx_train = llama_n_ctx_train(model); |
|
const int n_ctx = llama_n_ctx(ctx); |
|
|
|
if (n_ctx > n_ctx_train) { |
|
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); |
|
} |
|
|
|
|
|
if (params.conversation) { |
|
if (params.enable_chat_template) { |
|
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str()); |
|
} else { |
|
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__); |
|
} |
|
} |
|
|
|
|
|
{ |
|
LOG_INF("\n"); |
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str()); |
|
LOG_INF("\n"); |
|
} |
|
|
|
std::string path_session = params.path_prompt_cache; |
|
std::vector<llama_token> session_tokens; |
|
|
|
if (!path_session.empty()) { |
|
LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str()); |
|
if (!file_exists(path_session)) { |
|
LOG_INF("%s: session file does not exist, will create.\n", __func__); |
|
} else if (file_is_empty(path_session)) { |
|
LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__); |
|
} else { |
|
|
|
session_tokens.resize(n_ctx); |
|
size_t n_token_count_out = 0; |
|
if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { |
|
LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str()); |
|
return 1; |
|
} |
|
session_tokens.resize(n_token_count_out); |
|
LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size()); |
|
} |
|
} |
|
|
|
const bool add_bos = llama_add_bos_token(model); |
|
if (!llama_model_has_encoder(model)) { |
|
GGML_ASSERT(!llama_add_eos_token(model)); |
|
} |
|
|
|
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos); |
|
|
|
std::vector<llama_token> embd_inp; |
|
|
|
{ |
|
auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty()) |
|
? chat_add_and_format(model, chat_msgs, "system", params.prompt) |
|
: params.prompt; |
|
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) { |
|
LOG_DBG("tokenize the prompt\n"); |
|
embd_inp = common_tokenize(ctx, prompt, true, true); |
|
} else { |
|
LOG_DBG("use session tokens\n"); |
|
embd_inp = session_tokens; |
|
} |
|
|
|
LOG_DBG("prompt: \"%s\"\n", prompt.c_str()); |
|
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str()); |
|
} |
|
|
|
|
|
if (embd_inp.empty()) { |
|
if (add_bos) { |
|
embd_inp.push_back(llama_token_bos(model)); |
|
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str()); |
|
} else { |
|
LOG_ERR("input is empty\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
|
|
if ((int) embd_inp.size() > n_ctx - 4) { |
|
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); |
|
return 1; |
|
} |
|
|
|
|
|
size_t n_matching_session_tokens = 0; |
|
if (!session_tokens.empty()) { |
|
for (llama_token id : session_tokens) { |
|
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { |
|
break; |
|
} |
|
n_matching_session_tokens++; |
|
} |
|
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) { |
|
LOG_INF("%s: using full prompt from session file\n", __func__); |
|
} else if (n_matching_session_tokens >= embd_inp.size()) { |
|
LOG_INF("%s: session file has exact match for prompt!\n", __func__); |
|
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) { |
|
LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", |
|
__func__, n_matching_session_tokens, embd_inp.size()); |
|
} else { |
|
LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n", |
|
__func__, n_matching_session_tokens, embd_inp.size()); |
|
} |
|
|
|
|
|
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1); |
|
} |
|
|
|
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n", |
|
embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size()); |
|
|
|
|
|
|
|
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { |
|
LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1); |
|
|
|
session_tokens.resize(embd_inp.size() - 1); |
|
} |
|
|
|
|
|
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) { |
|
params.n_keep = (int)embd_inp.size(); |
|
} else { |
|
params.n_keep += add_bos; |
|
} |
|
|
|
if (params.conversation) { |
|
params.interactive_first = true; |
|
} |
|
|
|
|
|
if (params.interactive_first) { |
|
params.interactive = true; |
|
} |
|
|
|
if (params.verbose_prompt) { |
|
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); |
|
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); |
|
for (int i = 0; i < (int) embd_inp.size(); i++) { |
|
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str()); |
|
} |
|
|
|
if (params.n_keep > add_bos) { |
|
LOG_INF("%s: static prompt based on n_keep: '", __func__); |
|
for (int i = 0; i < params.n_keep; i++) { |
|
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str()); |
|
} |
|
LOG_CNT("'\n"); |
|
} |
|
LOG_INF("\n"); |
|
} |
|
|
|
|
|
{ |
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
|
struct sigaction sigint_action; |
|
sigint_action.sa_handler = sigint_handler; |
|
sigemptyset (&sigint_action.sa_mask); |
|
sigint_action.sa_flags = 0; |
|
sigaction(SIGINT, &sigint_action, NULL); |
|
#elif defined (_WIN32) |
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { |
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; |
|
}; |
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); |
|
#endif |
|
} |
|
|
|
if (params.interactive) { |
|
LOG_INF("%s: interactive mode on.\n", __func__); |
|
|
|
if (!params.antiprompt.empty()) { |
|
for (const auto & antiprompt : params.antiprompt) { |
|
LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str()); |
|
if (params.verbose_prompt) { |
|
auto tmp = common_tokenize(ctx, antiprompt, false, true); |
|
for (int i = 0; i < (int) tmp.size(); i++) { |
|
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (params.input_prefix_bos) { |
|
LOG_INF("Input prefix with BOS\n"); |
|
} |
|
|
|
if (!params.input_prefix.empty()) { |
|
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str()); |
|
if (params.verbose_prompt) { |
|
auto tmp = common_tokenize(ctx, params.input_prefix, true, true); |
|
for (int i = 0; i < (int) tmp.size(); i++) { |
|
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); |
|
} |
|
} |
|
} |
|
|
|
if (!params.input_suffix.empty()) { |
|
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str()); |
|
if (params.verbose_prompt) { |
|
auto tmp = common_tokenize(ctx, params.input_suffix, false, true); |
|
for (int i = 0; i < (int) tmp.size(); i++) { |
|
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); |
|
} |
|
} |
|
} |
|
} |
|
|
|
smpl = common_sampler_init(model, sparams); |
|
if (!smpl) { |
|
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); |
|
return 1; |
|
} |
|
|
|
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl)); |
|
LOG_INF("sampler params: \n%s\n", sparams.print().c_str()); |
|
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str()); |
|
|
|
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); |
|
|
|
|
|
|
|
int ga_i = 0; |
|
|
|
const int ga_n = params.grp_attn_n; |
|
const int ga_w = params.grp_attn_w; |
|
|
|
if (ga_n != 1) { |
|
GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); |
|
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); |
|
|
|
|
|
LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w); |
|
} |
|
LOG_INF("\n"); |
|
|
|
if (params.interactive) { |
|
const char * control_message; |
|
if (params.multiline_input) { |
|
control_message = " - To return control to the AI, end your input with '\\'.\n" |
|
" - To return control without starting a new line, end your input with '/'.\n"; |
|
} else { |
|
control_message = " - Press Return to return control to the AI.\n" |
|
" - To return control without starting a new line, end your input with '/'.\n" |
|
" - If you want to submit another line, end your input with '\\'.\n"; |
|
} |
|
LOG_INF("== Running in interactive mode. ==\n"); |
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) |
|
LOG_INF( " - Press Ctrl+C to interject at any time.\n"); |
|
#endif |
|
LOG_INF( "%s\n", control_message); |
|
|
|
is_interacting = params.interactive_first; |
|
} |
|
|
|
bool is_antiprompt = false; |
|
bool input_echo = true; |
|
bool display = true; |
|
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size(); |
|
|
|
int n_past = 0; |
|
int n_remain = params.n_predict; |
|
int n_consumed = 0; |
|
int n_session_consumed = 0; |
|
|
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens; |
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens; |
|
std::ostringstream output_ss; g_output_ss = &output_ss; |
|
std::ostringstream assistant_ss; |
|
|
|
|
|
console::set_display(console::prompt); |
|
display = params.display_prompt; |
|
|
|
std::vector<llama_token> embd; |
|
|
|
|
|
std::vector<std::vector<llama_token>> antiprompt_ids; |
|
|
|
antiprompt_ids.reserve(params.antiprompt.size()); |
|
for (const std::string & antiprompt : params.antiprompt) { |
|
antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true)); |
|
} |
|
|
|
if (llama_model_has_encoder(model)) { |
|
int enc_input_size = embd_inp.size(); |
|
llama_token * enc_input_buf = embd_inp.data(); |
|
|
|
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) { |
|
LOG_ERR("%s : failed to eval\n", __func__); |
|
return 1; |
|
} |
|
|
|
llama_token decoder_start_token_id = llama_model_decoder_start_token(model); |
|
if (decoder_start_token_id == -1) { |
|
decoder_start_token_id = llama_token_bos(model); |
|
} |
|
|
|
embd_inp.clear(); |
|
embd_inp.push_back(decoder_start_token_id); |
|
} |
|
|
|
while ((n_remain != 0 && !is_antiprompt) || params.interactive) { |
|
|
|
if (!embd.empty()) { |
|
|
|
|
|
int max_embd_size = n_ctx - 4; |
|
|
|
|
|
if ((int) embd.size() > max_embd_size) { |
|
const int skipped_tokens = (int) embd.size() - max_embd_size; |
|
embd.resize(max_embd_size); |
|
|
|
console::set_display(console::error); |
|
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); |
|
console::set_display(console::reset); |
|
} |
|
|
|
if (ga_n == 1) { |
|
|
|
|
|
|
|
|
|
|
|
if (n_past + (int) embd.size() >= n_ctx) { |
|
if (!params.ctx_shift){ |
|
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__); |
|
break; |
|
} |
|
|
|
if (params.n_predict == -2) { |
|
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); |
|
break; |
|
} |
|
|
|
const int n_left = n_past - params.n_keep; |
|
const int n_discard = n_left/2; |
|
|
|
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", |
|
n_past, n_left, n_ctx, params.n_keep, n_discard); |
|
|
|
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard); |
|
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard); |
|
|
|
n_past -= n_discard; |
|
|
|
LOG_DBG("after swap: n_past = %d\n", n_past); |
|
|
|
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str()); |
|
|
|
LOG_DBG("clear session path\n"); |
|
path_session.clear(); |
|
} |
|
} else { |
|
|
|
while (n_past >= ga_i + ga_w) { |
|
const int ib = (ga_n*ga_i)/ga_w; |
|
const int bd = (ga_w/ga_n)*(ga_n - 1); |
|
const int dd = (ga_w/ga_n) - ib*bd - ga_w; |
|
|
|
LOG_DBG("\n"); |
|
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd); |
|
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n); |
|
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd); |
|
|
|
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd); |
|
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); |
|
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); |
|
|
|
n_past -= bd; |
|
|
|
ga_i += ga_w/ga_n; |
|
|
|
LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i); |
|
} |
|
} |
|
|
|
|
|
if (n_session_consumed < (int) session_tokens.size()) { |
|
size_t i = 0; |
|
for ( ; i < embd.size(); i++) { |
|
if (embd[i] != session_tokens[n_session_consumed]) { |
|
session_tokens.resize(n_session_consumed); |
|
break; |
|
} |
|
|
|
n_past++; |
|
n_session_consumed++; |
|
|
|
if (n_session_consumed >= (int) session_tokens.size()) { |
|
++i; |
|
break; |
|
} |
|
} |
|
if (i > 0) { |
|
embd.erase(embd.begin(), embd.begin() + i); |
|
} |
|
} |
|
|
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) { |
|
int n_eval = (int) embd.size() - i; |
|
if (n_eval > params.n_batch) { |
|
n_eval = params.n_batch; |
|
} |
|
|
|
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str()); |
|
|
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) { |
|
LOG_ERR("%s : failed to eval\n", __func__); |
|
return 1; |
|
} |
|
|
|
n_past += n_eval; |
|
|
|
LOG_DBG("n_past = %d\n", n_past); |
|
|
|
if (params.n_print > 0 && n_past % params.n_print == 0) { |
|
LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx); |
|
} |
|
} |
|
|
|
if (!embd.empty() && !path_session.empty()) { |
|
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); |
|
n_session_consumed = session_tokens.size(); |
|
} |
|
} |
|
|
|
embd.clear(); |
|
|
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) { |
|
|
|
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { |
|
need_to_save_session = false; |
|
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); |
|
|
|
LOG_DBG("saved session to %s\n", path_session.c_str()); |
|
} |
|
|
|
const llama_token id = common_sampler_sample(smpl, ctx, -1); |
|
|
|
common_sampler_accept(smpl, id, true); |
|
|
|
|
|
|
|
embd.push_back(id); |
|
|
|
|
|
input_echo = true; |
|
|
|
|
|
--n_remain; |
|
|
|
LOG_DBG("n_remain: %d\n", n_remain); |
|
} else { |
|
|
|
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); |
|
while ((int) embd_inp.size() > n_consumed) { |
|
embd.push_back(embd_inp[n_consumed]); |
|
|
|
|
|
|
|
common_sampler_accept(smpl, embd_inp[n_consumed], false); |
|
|
|
++n_consumed; |
|
if ((int) embd.size() >= params.n_batch) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (input_echo && display) { |
|
for (auto id : embd) { |
|
const std::string token_str = common_token_to_piece(ctx, id, params.special); |
|
|
|
|
|
LOG("%s", token_str.c_str()); |
|
|
|
|
|
|
|
if (embd.size() > 1) { |
|
|
|
input_tokens.push_back(id); |
|
} else { |
|
|
|
output_tokens.push_back(id); |
|
output_ss << token_str; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (input_echo && (int) embd_inp.size() == n_consumed) { |
|
console::set_display(console::reset); |
|
display = true; |
|
} |
|
|
|
|
|
if ((int) embd_inp.size() <= n_consumed) { |
|
|
|
if (!params.antiprompt.empty()) { |
|
const int n_prev = 32; |
|
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev); |
|
|
|
is_antiprompt = false; |
|
|
|
|
|
|
|
for (std::string & antiprompt : params.antiprompt) { |
|
size_t extra_padding = params.interactive ? 0 : 2; |
|
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding) |
|
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding) |
|
: 0; |
|
|
|
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) { |
|
if (params.interactive) { |
|
is_interacting = true; |
|
} |
|
is_antiprompt = true; |
|
break; |
|
} |
|
} |
|
|
|
|
|
llama_token last_token = common_sampler_last(smpl); |
|
for (std::vector<llama_token> ids : antiprompt_ids) { |
|
if (ids.size() == 1 && last_token == ids[0]) { |
|
if (params.interactive) { |
|
is_interacting = true; |
|
} |
|
is_antiprompt = true; |
|
break; |
|
} |
|
} |
|
|
|
if (is_antiprompt) { |
|
LOG_DBG("found antiprompt: %s\n", last_output.c_str()); |
|
} |
|
} |
|
|
|
|
|
if (llama_token_is_eog(model, common_sampler_last(smpl))) { |
|
LOG_DBG("found an EOG token\n"); |
|
|
|
if (params.interactive) { |
|
if (!params.antiprompt.empty()) { |
|
|
|
const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true); |
|
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); |
|
is_antiprompt = true; |
|
} |
|
|
|
if (params.enable_chat_template) { |
|
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str()); |
|
} |
|
is_interacting = true; |
|
LOG("\n"); |
|
} |
|
} |
|
|
|
|
|
if (params.conversation) { |
|
const auto id = common_sampler_last(smpl); |
|
assistant_ss << common_token_to_piece(ctx, id, false); |
|
} |
|
|
|
if (n_past > 0 && is_interacting) { |
|
LOG_DBG("waiting for user input\n"); |
|
|
|
if (params.conversation) { |
|
LOG("\n> "); |
|
} |
|
|
|
if (params.input_prefix_bos) { |
|
LOG_DBG("adding input prefix BOS token\n"); |
|
embd_inp.push_back(llama_token_bos(model)); |
|
} |
|
|
|
std::string buffer; |
|
if (!params.input_prefix.empty() && !params.conversation) { |
|
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str()); |
|
LOG("%s", params.input_prefix.c_str()); |
|
} |
|
|
|
|
|
console::set_display(console::user_input); |
|
display = params.display_prompt; |
|
|
|
std::string line; |
|
bool another_line = true; |
|
do { |
|
another_line = console::readline(line, params.multiline_input); |
|
buffer += line; |
|
} while (another_line); |
|
|
|
|
|
console::set_display(console::reset); |
|
display = true; |
|
|
|
|
|
|
|
if (buffer.length() > 1) { |
|
|
|
if (!params.input_suffix.empty() && !params.conversation) { |
|
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str()); |
|
LOG("%s", params.input_suffix.c_str()); |
|
} |
|
|
|
LOG_DBG("buffer: '%s'\n", buffer.c_str()); |
|
|
|
const size_t original_size = embd_inp.size(); |
|
|
|
if (params.escape) { |
|
string_process_escapes(buffer); |
|
} |
|
|
|
bool format_chat = params.conversation && params.enable_chat_template; |
|
std::string user_inp = format_chat |
|
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer)) |
|
: std::move(buffer); |
|
|
|
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true); |
|
const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat); |
|
const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true); |
|
|
|
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str()); |
|
|
|
|
|
if (need_insert_eot && format_chat) { |
|
llama_token eot = llama_token_eot(model); |
|
embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot); |
|
need_insert_eot = false; |
|
} |
|
|
|
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end()); |
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); |
|
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end()); |
|
|
|
for (size_t i = original_size; i < embd_inp.size(); ++i) { |
|
const llama_token token = embd_inp[i]; |
|
output_tokens.push_back(token); |
|
output_ss << common_token_to_piece(ctx, token); |
|
} |
|
|
|
|
|
assistant_ss.str(""); |
|
|
|
n_remain -= line_inp.size(); |
|
LOG_DBG("n_remain: %d\n", n_remain); |
|
} else { |
|
LOG_DBG("empty line, passing control back\n"); |
|
} |
|
|
|
input_echo = false; |
|
} |
|
|
|
if (n_past > 0) { |
|
if (is_interacting) { |
|
common_sampler_reset(smpl); |
|
} |
|
is_interacting = false; |
|
} |
|
} |
|
|
|
|
|
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) { |
|
LOG(" [end of text]\n"); |
|
break; |
|
} |
|
|
|
|
|
|
|
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { |
|
n_remain = params.n_predict; |
|
is_interacting = true; |
|
} |
|
} |
|
|
|
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) { |
|
LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str()); |
|
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); |
|
} |
|
|
|
LOG("\n\n"); |
|
common_perf_print(ctx, smpl); |
|
|
|
common_sampler_free(smpl); |
|
|
|
llama_free(ctx); |
|
llama_free_model(model); |
|
|
|
llama_backend_free(); |
|
|
|
ggml_threadpool_free_fn(threadpool); |
|
ggml_threadpool_free_fn(threadpool_batch); |
|
|
|
return 0; |
|
} |
|
|