|
#include "arg.h" |
|
#include "common.h" |
|
#include "log.h" |
|
#include "llama.h" |
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <atomic> |
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <ctime> |
|
#include <fstream> |
|
#include <mutex> |
|
#include <random> |
|
#include <sstream> |
|
#include <thread> |
|
#include <vector> |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
struct results_perplexity { |
|
std::vector<llama_token> tokens; |
|
double ppl_value; |
|
std::vector<float> logits; |
|
std::vector<float> probs; |
|
}; |
|
|
|
struct results_log_softmax { |
|
double log_softmax; |
|
float logit; |
|
float prob; |
|
}; |
|
|
|
static std::vector<float> softmax(const std::vector<float>& logits) { |
|
std::vector<float> probs(logits.size()); |
|
float max_logit = logits[0]; |
|
for (float v : logits) { |
|
max_logit = std::max(max_logit, v); |
|
} |
|
double sum_exp = 0.0; |
|
for (size_t i = 0; i < logits.size(); i++) { |
|
|
|
const float logit = logits[i] - max_logit; |
|
const float exp_logit = expf(logit); |
|
sum_exp += exp_logit; |
|
probs[i] = exp_logit; |
|
} |
|
for (size_t i = 0; i < probs.size(); i++) { |
|
probs[i] /= sum_exp; |
|
} |
|
return probs; |
|
} |
|
|
|
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { |
|
float max_logit = logits[0]; |
|
for (int i = 1; i < n_vocab; ++i) { |
|
max_logit = std::max(max_logit, logits[i]); |
|
} |
|
double sum_exp = 0.0; |
|
for (int i = 0; i < n_vocab; ++i) { |
|
sum_exp += expf(logits[i] - max_logit); |
|
} |
|
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; |
|
} |
|
|
|
static inline int nearest_int(float fval) { |
|
|
|
float val = fval + 12582912.f; |
|
int i; memcpy(&i, &val, sizeof(int)); |
|
return (i & 0x007fffff) - 0x00400000; |
|
} |
|
|
|
static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) { |
|
float max_logit = logits[0]; |
|
float min_logit = logits[0]; |
|
for (int i = 1; i < n_vocab; ++i) { |
|
max_logit = std::max(max_logit, logits[i]); |
|
min_logit = std::min(min_logit, logits[i]); |
|
} |
|
min_logit = std::max(min_logit, max_logit - 16); |
|
double sum_exp = 0.0; |
|
for (int i = 0; i < n_vocab; ++i) { |
|
sum_exp += expf(logits[i] - max_logit); |
|
} |
|
const float log_sum_exp = log(sum_exp); |
|
const float min_log_prob = min_logit - max_logit - log_sum_exp; |
|
const float scale = (max_logit - min_logit)/65535.f; |
|
float * d = (float *)log_prob; |
|
d[0] = scale; |
|
d[1] = min_log_prob; |
|
log_prob += 4; |
|
if (scale) { |
|
const float inv_scale = 1/scale; |
|
for (int i = 0; i < n_vocab; ++i) { |
|
log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0; |
|
} |
|
} else { |
|
std::memset(log_prob, 0, n_vocab*sizeof(uint16_t)); |
|
} |
|
return max_logit + log_sum_exp - logits[tok]; |
|
} |
|
|
|
static void process_logits( |
|
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers, |
|
double & nll, double & nll2, float * logit_history, float * prob_history |
|
) { |
|
std::mutex mutex; |
|
int counter = 0; |
|
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { |
|
double local_nll = 0; |
|
double local_nll2 = 0; |
|
while (true) { |
|
std::unique_lock<std::mutex> lock(mutex); |
|
int i = counter++; |
|
if (i >= n_token) { |
|
nll += local_nll; nll2 += local_nll2; |
|
break; |
|
} |
|
lock.unlock(); |
|
const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]); |
|
const double v = -results.log_softmax; |
|
local_nll += v; |
|
local_nll2 += v*v; |
|
|
|
logit_history[i] = results.logit; |
|
prob_history[i] = results.prob; |
|
} |
|
}; |
|
for (auto & w : workers) { |
|
w = std::thread(compute); |
|
} |
|
compute(); |
|
for (auto & w : workers) { |
|
w.join(); |
|
} |
|
} |
|
|
|
static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token, |
|
std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) { |
|
std::mutex mutex; |
|
const int nv = 2*((n_vocab + 1)/2) + 4; |
|
int counter = 0; |
|
auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () { |
|
double local_nll = 0; |
|
double local_nll2 = 0; |
|
while (true) { |
|
std::unique_lock<std::mutex> lock(mutex); |
|
int i = counter++; |
|
if (i >= n_token) { |
|
nll += local_nll; nll2 += local_nll2; |
|
break; |
|
} |
|
lock.unlock(); |
|
const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]); |
|
local_nll += v; |
|
local_nll2 += v*v; |
|
} |
|
}; |
|
for (auto & w : workers) { |
|
w = std::thread(compute); |
|
} |
|
compute(); |
|
for (auto & w : workers) { |
|
w.join(); |
|
} |
|
out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t)); |
|
} |
|
|
|
struct kl_divergence_result { |
|
double sum_nll = 0.0; |
|
double sum_nll2 = 0.0; |
|
double sum_nll_base = 0.0; |
|
double sum_nll_base2 = 0.0; |
|
double sum_nll_nll_base = 0.0; |
|
double sum_kld = 0.0; |
|
double sum_kld2 = 0.0; |
|
double sum_p_diff = 0.0; |
|
double sum_p_diff2 = 0.0; |
|
double sum_p_diff4 = 0.0; |
|
float max_p_diff = 0.0f; |
|
size_t n_same_top = 0.0; |
|
size_t count = 0.0; |
|
}; |
|
|
|
static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { |
|
float max_logit = logits[0]; |
|
int imax = 0; |
|
for (int i = 1; i < n_vocab; ++i) { |
|
if (logits[i] > max_logit) { |
|
max_logit = logits[i]; |
|
imax = i; |
|
} |
|
} |
|
double sum_exp = 0.0; |
|
for (int i = 0; i < n_vocab; ++i) { |
|
sum_exp += expf(logits[i] - max_logit); |
|
} |
|
const float log_sum_exp = log(sum_exp); |
|
const float * d = (const float *)base_log_prob; |
|
const float scale = d[0]; |
|
const float min_log_prob = d[1]; |
|
base_log_prob += 4; |
|
|
|
const float nll = max_logit + log_sum_exp - logits[tok]; |
|
kld.sum_nll += nll; |
|
kld.sum_nll2 += nll*nll; |
|
|
|
const float nll_base = -(scale*base_log_prob[tok] + min_log_prob); |
|
kld.sum_nll_base += nll_base; |
|
kld.sum_nll_base2 += nll_base*nll_base; |
|
|
|
kld.sum_nll_nll_base += nll*nll_base; |
|
|
|
max_logit += log_sum_exp; |
|
double sum = 0; |
|
int imax_base = -1; |
|
float p_log_base_max = 0; |
|
for (int i = 0; i < n_vocab; ++i) { |
|
const float p_log_base = scale*base_log_prob[i] + min_log_prob; |
|
if (i == 0 || p_log_base > p_log_base_max) { |
|
p_log_base_max = p_log_base; |
|
imax_base = i; |
|
} |
|
if (p_log_base > -16.f) { |
|
const float p_base = expf(p_log_base); |
|
sum += p_base * (p_log_base - logits[i] + max_logit); |
|
} |
|
} |
|
kld.sum_kld += sum; |
|
kld.sum_kld2 += sum*sum; |
|
++kld.count; |
|
if (imax == imax_base) { |
|
++kld.n_same_top; |
|
} |
|
|
|
const float p_base = expf(-nll_base); |
|
const float p = expf(-nll); |
|
const float p_diff = p - p_base; |
|
kld.sum_p_diff += p_diff; |
|
const double p_diff2 = p_diff*p_diff; |
|
kld.sum_p_diff2 += p_diff2; |
|
kld.sum_p_diff4 += p_diff2*p_diff2; |
|
kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff)); |
|
|
|
return std::make_pair(sum, p_diff); |
|
} |
|
|
|
static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, |
|
std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld, |
|
float * kld_values, float * p_diff_values) { |
|
std::mutex mutex; |
|
const int nv = 2*((n_vocab + 1)/2) + 4; |
|
int counter = 0; |
|
auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () { |
|
kl_divergence_result local_kld; |
|
while (true) { |
|
std::unique_lock<std::mutex> lock(mutex); |
|
int i = counter++; |
|
if (i >= n_token) { |
|
kld.sum_nll += local_kld.sum_nll; |
|
kld.sum_nll2 += local_kld.sum_nll2; |
|
kld.sum_nll_base += local_kld.sum_nll_base; |
|
kld.sum_nll_base2 += local_kld.sum_nll_base2; |
|
kld.sum_nll_nll_base += local_kld.sum_nll_nll_base; |
|
kld.sum_kld += local_kld.sum_kld; |
|
kld.sum_kld2 += local_kld.sum_kld2; |
|
kld.sum_p_diff += local_kld.sum_p_diff; |
|
kld.sum_p_diff2 += local_kld.sum_p_diff2; |
|
kld.sum_p_diff4 += local_kld.sum_p_diff4; |
|
kld.n_same_top += local_kld.n_same_top; |
|
kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff); |
|
kld.count += local_kld.count; |
|
break; |
|
} |
|
lock.unlock(); |
|
std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); |
|
kld_values[i] = (float)v.first; |
|
p_diff_values[i] = v.second; |
|
} |
|
}; |
|
for (auto & w : workers) { |
|
w = std::thread(compute); |
|
} |
|
compute(); |
|
for (auto & w : workers) { |
|
w.join(); |
|
} |
|
} |
|
|
|
static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) { |
|
|
|
|
|
|
|
|
|
|
|
const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); |
|
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); |
|
|
|
LOG_INF("%s: tokenizing the input ..\n", __func__); |
|
|
|
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true); |
|
|
|
const int n_ctx = llama_n_ctx(ctx); |
|
|
|
if (int(tokens.size()) < 2*n_ctx) { |
|
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, |
|
n_ctx); |
|
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); |
|
return {std::move(tokens), 0., {}, {}}; |
|
} |
|
|
|
std::vector<float> logit_history; |
|
std::vector<float> prob_history; |
|
|
|
logit_history.resize(tokens.size()); |
|
prob_history.resize(tokens.size()); |
|
|
|
if (params.ppl_stride <= 0) { |
|
LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride); |
|
return {tokens, -1, logit_history, prob_history}; |
|
} |
|
|
|
const int calc_chunk = n_ctx; |
|
|
|
LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); |
|
|
|
if (int(tokens.size()) <= calc_chunk) { |
|
LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, |
|
tokens.size(), n_ctx, params.ppl_stride); |
|
return {tokens, -1, logit_history, prob_history}; |
|
} |
|
|
|
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; |
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); |
|
const int n_batch = params.n_batch; |
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); |
|
|
|
int count = 0; |
|
double nll = 0.0; |
|
|
|
LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); |
|
|
|
for (int i = 0; i < n_chunk; ++i) { |
|
const int start = i * params.ppl_stride; |
|
const int end = start + calc_chunk; |
|
|
|
const int num_batches = (calc_chunk + n_batch - 1) / n_batch; |
|
|
|
|
|
std::vector<float> logits; |
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now(); |
|
|
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
llama_batch batch = llama_batch_init(n_batch, 0, 1); |
|
|
|
for (int j = 0; j < num_batches; ++j) { |
|
const int batch_start = start + j * n_batch; |
|
const int batch_size = std::min(end - batch_start, n_batch); |
|
|
|
common_batch_clear(batch); |
|
for (int i = 0; i < batch_size; i++) { |
|
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true); |
|
} |
|
|
|
|
|
if (llama_decode(ctx, batch)) { |
|
|
|
llama_batch_free(batch); |
|
return {tokens, -1, logit_history, prob_history}; |
|
} |
|
|
|
|
|
const auto token_org = tokens[batch_start]; |
|
|
|
|
|
if (add_bos && j == 0) { |
|
tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); |
|
} |
|
|
|
const auto * batch_logits = llama_get_logits(ctx); |
|
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab); |
|
|
|
if (j == 0) { |
|
tokens[batch_start] = token_org; |
|
} |
|
} |
|
|
|
llama_batch_free(batch); |
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now(); |
|
|
|
if (i == 0) { |
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); |
|
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); |
|
int total_seconds = (int)(t_total * n_chunk); |
|
if (total_seconds >= 60*60) { |
|
LOG("%d hours ", total_seconds / (60*60)); |
|
total_seconds = total_seconds % (60*60); |
|
} |
|
LOG("%.2f minutes\n", total_seconds / 60.0); |
|
} |
|
|
|
|
|
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) { |
|
|
|
const std::vector<float> tok_logits( |
|
logits.begin() + size_t(j + 0) * n_vocab, |
|
logits.begin() + size_t(j + 1) * n_vocab); |
|
|
|
const float prob = softmax(tok_logits)[tokens[start + j + 1]]; |
|
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]]; |
|
prob_history[start + j + 1] = prob; |
|
|
|
nll += -std::log(prob); |
|
++count; |
|
} |
|
|
|
if (params.ppl_output_type == 0) { |
|
LOG("[%d]%.4lf,", i + 1, std::exp(nll / count)); |
|
} else { |
|
LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count)); |
|
} |
|
} |
|
LOG("\n"); |
|
|
|
return {tokens, std::exp(nll / count), logit_history, prob_history}; |
|
} |
|
|
|
static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) { |
|
if (params.ppl_stride > 0) { |
|
return perplexity_v2(ctx, params); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); |
|
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); |
|
|
|
std::ofstream logits_stream; |
|
if (!params.logits_file.empty()) { |
|
logits_stream.open(params.logits_file.c_str(), std::ios::binary); |
|
if (!logits_stream.is_open()) { |
|
LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str()); |
|
return {}; |
|
} |
|
LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str()); |
|
logits_stream.write("_logits_", 8); |
|
logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx)); |
|
} |
|
|
|
auto tim1 = std::chrono::high_resolution_clock::now(); |
|
LOG_INF("%s: tokenizing the input ..\n", __func__); |
|
|
|
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true); |
|
|
|
auto tim2 = std::chrono::high_resolution_clock::now(); |
|
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count()); |
|
|
|
if (int(tokens.size()) < 2*n_ctx) { |
|
LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, |
|
n_ctx); |
|
LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); |
|
return {std::move(tokens), 0., {}, {}}; |
|
} |
|
|
|
std::vector<float> logit_history; |
|
logit_history.resize(tokens.size()); |
|
|
|
std::vector<float> prob_history; |
|
prob_history.resize(tokens.size()); |
|
|
|
const int n_chunk_max = tokens.size() / n_ctx; |
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); |
|
const int n_batch = params.n_batch; |
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); |
|
|
|
int count = 0; |
|
double nll = 0.0; |
|
double nll2 = 0.0; |
|
|
|
const int num_batches = (n_ctx + n_batch - 1) / n_batch; |
|
const int n_seq = std::max(1, n_batch / n_ctx); |
|
|
|
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0); |
|
GGML_ASSERT(params.n_ctx == n_seq * n_ctx); |
|
|
|
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1); |
|
|
|
std::vector<float> logits; |
|
if (num_batches > 1) { |
|
logits.reserve(size_t(n_ctx) * n_vocab); |
|
} |
|
|
|
LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq); |
|
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1); |
|
|
|
std::vector<uint16_t> log_probs; |
|
if (!params.logits_file.empty()) { |
|
logits_stream.write((const char *)&n_vocab, sizeof(n_vocab)); |
|
logits_stream.write((const char *)&n_chunk, sizeof(n_chunk)); |
|
logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0])); |
|
const int nv = 2*((n_vocab + 1)/2) + 4; |
|
log_probs.resize(n_ctx * nv); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int first = n_ctx/2; |
|
|
|
for (int i = 0; i < n_chunk; i += n_seq) { |
|
const int start = i * n_ctx; |
|
const int end = start + n_ctx; |
|
|
|
const int n_seq_batch = std::min(n_seq, n_chunk - i); |
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now(); |
|
|
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
for (int j = 0; j < num_batches; ++j) { |
|
const int batch_start = start + j * n_batch; |
|
const int batch_size = std::min(end - batch_start, n_batch); |
|
|
|
int n_outputs = 0; |
|
|
|
batch.n_tokens = 0; |
|
for (int seq = 0; seq < n_seq_batch; seq++) { |
|
int seq_start = batch_start + seq*n_ctx; |
|
|
|
|
|
const auto token_org = tokens[seq_start]; |
|
|
|
|
|
if (add_bos && j == 0) { |
|
tokens[seq_start] = llama_token_bos(llama_get_model(ctx)); |
|
} |
|
|
|
for (int k = 0; k < batch_size; ++k) { |
|
const int idx = seq*n_ctx + k; |
|
batch.token [idx] = tokens[seq_start + k]; |
|
batch.pos [idx] = j*n_batch + k; |
|
batch.n_seq_id[idx] = 1; |
|
batch.seq_id [idx][0] = seq; |
|
batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0; |
|
|
|
n_outputs += batch.logits[idx] != 0; |
|
} |
|
batch.n_tokens += batch_size; |
|
|
|
|
|
tokens[seq_start] = token_org; |
|
} |
|
|
|
if (llama_decode(ctx, batch)) { |
|
LOG_INF("%s : failed to eval\n", __func__); |
|
return {tokens, -1, logit_history, prob_history}; |
|
} |
|
|
|
if (num_batches > 1 && n_outputs > 0) { |
|
const auto * batch_logits = llama_get_logits(ctx); |
|
logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab); |
|
} |
|
} |
|
|
|
|
|
if (i == 0) { |
|
llama_synchronize(ctx); |
|
const auto t_end = std::chrono::high_resolution_clock::now(); |
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); |
|
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); |
|
int total_seconds = (int)(t_total*n_chunk/n_seq); |
|
if (total_seconds >= 60*60) { |
|
LOG("%d hours ", total_seconds / (60*60)); |
|
total_seconds = total_seconds % (60*60); |
|
} |
|
LOG("%.2f minutes\n", total_seconds / 60.0); |
|
} |
|
|
|
for (int seq = 0; seq < n_seq_batch; seq++) { |
|
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first); |
|
|
|
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first; |
|
if (!params.logits_file.empty()) { |
|
process_logits(logits_stream, n_vocab, all_logits, |
|
tokens_data, n_ctx - 1 - first, |
|
workers, log_probs, nll, nll2); |
|
} else { |
|
process_logits(n_vocab, all_logits, |
|
tokens_data, n_ctx - 1 - first, |
|
workers, nll, nll2, |
|
logit_history.data() + start + seq*n_ctx + first, |
|
prob_history.data() + start + seq*n_ctx + first); |
|
} |
|
count += n_ctx - first - 1; |
|
|
|
|
|
if (params.ppl_output_type == 0) { |
|
LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count)); |
|
} else { |
|
double av = nll/count; |
|
double av2 = nll2/count - av*av; |
|
if (av2 > 0) { |
|
av2 = sqrt(av2/(count-1)); |
|
} |
|
LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2); |
|
} |
|
} |
|
|
|
logits.clear(); |
|
} |
|
LOG("\n"); |
|
|
|
nll2 /= count; |
|
nll /= count; |
|
const double ppl = exp(nll); |
|
nll2 -= nll * nll; |
|
if (nll2 > 0) { |
|
nll2 = sqrt(nll2/(count-1)); |
|
LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); |
|
} else { |
|
LOG_ERR("Unexpected negative standard deviation of log(prob)\n"); |
|
} |
|
|
|
llama_batch_free(batch); |
|
|
|
return {tokens, ppl, logit_history, prob_history}; |
|
} |
|
|
|
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) { |
|
int prev_outputs = 0; |
|
for (int i = 0; i < (int) batch.n_tokens; i += n_batch) { |
|
const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i); |
|
|
|
llama_batch batch_view = { |
|
n_tokens, |
|
batch.token + i, |
|
nullptr, |
|
batch.pos + i, |
|
batch.n_seq_id + i, |
|
batch.seq_id + i, |
|
batch.logits + i, |
|
}; |
|
|
|
const int ret = llama_decode(ctx, batch_view); |
|
if (ret != 0) { |
|
LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); |
|
return false; |
|
} |
|
|
|
int n_outputs = 0; |
|
for (int i = 0; i < n_tokens; ++i) { |
|
n_outputs += batch_view.logits[i] != 0; |
|
} |
|
|
|
memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float)); |
|
|
|
prev_outputs += n_outputs; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#define K_TOKEN_CHUNK 4 |
|
|
|
static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers, |
|
const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) { |
|
if (eval_results.size() != eval_pairs.size()) { |
|
eval_results.resize(eval_pairs.size()); |
|
} |
|
if (eval_pairs.empty()) { |
|
return; |
|
} |
|
|
|
size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size()); |
|
|
|
std::atomic<int> counter(0); |
|
auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () { |
|
float local_logprobs[K_TOKEN_CHUNK]; |
|
while (true) { |
|
const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed); |
|
if (first >= eval_results.size()) { |
|
break; |
|
} |
|
const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size()); |
|
for (size_t i = first; i < last; ++i) { |
|
const auto * logits = batch_logits + eval_pairs[i].first * n_vocab; |
|
float max_logit = logits[0]; |
|
for (int j = 1; j < n_vocab; ++j) { |
|
max_logit = std::max(max_logit, logits[j]); |
|
} |
|
float sum_p = 0.f; |
|
for (int j = 0; j < n_vocab; ++j) { |
|
sum_p += expf(logits[j] - max_logit); |
|
} |
|
local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p); |
|
} |
|
std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float)); |
|
} |
|
}; |
|
|
|
for (size_t it = 0; it < max_threads; ++it) { |
|
workers[it] = std::thread(compute); |
|
} |
|
for (size_t it = 0; it < max_threads; ++it) { |
|
workers[it].join(); |
|
} |
|
} |
|
|
|
static void hellaswag_score(llama_context * ctx, const common_params & params) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<std::string> prompt_lines; |
|
std::istringstream strstream(params.prompt); |
|
std::string line; |
|
|
|
while (std::getline(strstream,line,'\n')) { |
|
prompt_lines.push_back(line); |
|
} |
|
|
|
if (prompt_lines.size() % 6 != 0) { |
|
LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__); |
|
return; |
|
} |
|
|
|
size_t hs_task_count = prompt_lines.size()/6; |
|
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); |
|
|
|
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; |
|
LOG_INF("================================= is_spm = %d\n", is_spm); |
|
|
|
|
|
bool randomize_tasks = true; |
|
|
|
|
|
if (params.hellaswag_tasks < hs_task_count) { |
|
hs_task_count = params.hellaswag_tasks; |
|
} |
|
|
|
|
|
std::mt19937 rng(1); |
|
|
|
|
|
struct hs_data_t { |
|
std::string context; |
|
size_t gold_ending_idx; |
|
std::string ending[4]; |
|
size_t ending_logprob_count[4]; |
|
double ending_logprob[4]; |
|
|
|
size_t i_logits; |
|
size_t common_prefix; |
|
size_t required_tokens; |
|
std::vector<llama_token> seq_tokens[4]; |
|
}; |
|
|
|
LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); |
|
|
|
|
|
std::vector<hs_data_t> hs_data(hs_task_count); |
|
for (size_t i = 0; i < hs_task_count; i++) { |
|
size_t idx = i; |
|
|
|
auto & hs_cur = hs_data[i]; |
|
|
|
|
|
if (randomize_tasks) { |
|
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ; |
|
idx = dist(rng); |
|
} |
|
|
|
hs_cur.context = prompt_lines[idx*6]; |
|
hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); |
|
for (size_t j = 0; j < 4; j++) { |
|
hs_cur.ending[j] = prompt_lines[idx*6+2+j]; |
|
hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true); |
|
} |
|
|
|
|
|
hs_cur.common_prefix = 0; |
|
for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) { |
|
if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] || |
|
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] || |
|
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) { |
|
break; |
|
} |
|
hs_cur.common_prefix++; |
|
} |
|
hs_cur.required_tokens = hs_cur.common_prefix + |
|
hs_cur.seq_tokens[0].size() - hs_cur.common_prefix + |
|
hs_cur.seq_tokens[1].size() - hs_cur.common_prefix + |
|
hs_cur.seq_tokens[2].size() - hs_cur.common_prefix + |
|
hs_cur.seq_tokens[3].size() - hs_cur.common_prefix; |
|
|
|
|
|
|
|
|
|
if (randomize_tasks) { |
|
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); |
|
} |
|
} |
|
|
|
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__); |
|
|
|
LOG("\ntask\tacc_norm\n"); |
|
|
|
double acc = 0.0f; |
|
|
|
const int n_ctx = llama_n_ctx(ctx); |
|
const int n_batch = params.n_batch; |
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); |
|
|
|
const int max_tasks_per_batch = 32; |
|
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); |
|
|
|
llama_batch batch = llama_batch_init(n_ctx, 0, 4); |
|
|
|
std::vector<float> tok_logits(n_vocab); |
|
|
|
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab); |
|
|
|
std::vector<std::pair<size_t, llama_token>> eval_pairs; |
|
std::vector<float> eval_results; |
|
std::vector<std::thread> workers(std::thread::hardware_concurrency()); |
|
|
|
for (size_t i0 = 0; i0 < hs_task_count; i0++) { |
|
int n_cur = 0; |
|
|
|
size_t i1 = i0; |
|
size_t i_logits = 0; |
|
|
|
common_batch_clear(batch); |
|
|
|
|
|
|
|
|
|
|
|
while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) { |
|
auto & hs_cur = hs_data[i1]; |
|
int n_logits = 0; |
|
|
|
const int s0 = 4*(i1 - i0); |
|
if (s0 + 4 > max_seq) { |
|
break; |
|
} |
|
|
|
for (size_t i = 0; i < hs_cur.common_prefix; ++i) { |
|
common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false); |
|
} |
|
batch.logits[batch.n_tokens - 1] = true; |
|
n_logits += 1; |
|
|
|
for (int s = 0; s < 4; ++s) { |
|
const size_t seq_tokens_size = hs_cur.seq_tokens[s].size(); |
|
|
|
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) { |
|
const bool needs_logits = i < seq_tokens_size - 1; |
|
common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits); |
|
n_logits += needs_logits; |
|
} |
|
} |
|
|
|
hs_cur.i_logits = i_logits; |
|
i_logits += n_logits; |
|
|
|
n_cur += hs_data[i1].required_tokens; |
|
if (++i1 == hs_task_count) { |
|
break; |
|
} |
|
} |
|
|
|
if (i0 == i1) { |
|
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); |
|
return; |
|
} |
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
|
|
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { |
|
LOG_ERR("%s: llama_decode() failed\n", __func__); |
|
return; |
|
} |
|
|
|
|
|
|
|
eval_pairs.clear(); |
|
for (size_t i = i0; i < i1; ++i) { |
|
auto & hs_cur = hs_data[i]; |
|
size_t li = 1; |
|
for (int s = 0; s < 4; ++s) { |
|
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { |
|
eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]); |
|
} |
|
} |
|
} |
|
|
|
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); |
|
|
|
size_t ir = 0; |
|
|
|
|
|
for (size_t i = i0; i < i1; ++i) { |
|
auto & hs_cur = hs_data[i]; |
|
|
|
|
|
std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float)); |
|
|
|
const auto first_probs = softmax(tok_logits); |
|
|
|
for (int s = 0; s < 4; ++s) { |
|
hs_cur.ending_logprob_count[s] = 1; |
|
hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]); |
|
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { |
|
hs_cur.ending_logprob[s] += eval_results[ir++]; |
|
hs_cur.ending_logprob_count[s]++; |
|
} |
|
hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s]; |
|
} |
|
|
|
|
|
size_t ending_logprob_max_idx = 0; |
|
double ending_logprob_max_val = hs_cur.ending_logprob[0]; |
|
for (size_t s = 1; s < 4; s++) { |
|
if (hs_cur.ending_logprob[s] > ending_logprob_max_val) { |
|
ending_logprob_max_idx = s; |
|
ending_logprob_max_val = hs_cur.ending_logprob[s]; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
if (ending_logprob_max_idx == hs_cur.gold_ending_idx) { |
|
acc += 1.0; |
|
} |
|
|
|
|
|
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0); |
|
} |
|
|
|
i0 = i1 - 1; |
|
} |
|
|
|
llama_batch_free(batch); |
|
|
|
LOG("\n"); |
|
} |
|
|
|
struct winogrande_entry { |
|
std::string first; |
|
std::string second; |
|
std::array<std::string, 2> choices; |
|
int answer; |
|
|
|
size_t i_logits; |
|
size_t common_prefix; |
|
size_t required_tokens; |
|
size_t n_base1; |
|
size_t n_base2; |
|
std::vector<llama_token> seq_tokens[2]; |
|
}; |
|
|
|
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) { |
|
std::vector<winogrande_entry> result; |
|
std::istringstream in(prompt); |
|
std::string line; |
|
std::array<int, 4> comma_pos; |
|
while (true) { |
|
std::getline(in, line); |
|
if (in.fail() || in.eof()) break; |
|
int ipos = 0; |
|
bool quote_open = false; |
|
for (int i = 0; i < int(line.size()); ++i) { |
|
if (!quote_open) { |
|
if (line[i] == ',') { |
|
comma_pos[ipos++] = i; |
|
if (ipos == 4) break; |
|
} |
|
else if (line[i] == '"') { |
|
quote_open = true; |
|
} |
|
} |
|
else { |
|
if (line[i] == '"') { |
|
quote_open = false; |
|
} |
|
} |
|
} |
|
if (ipos != 4) { |
|
LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str()); |
|
continue; |
|
} |
|
auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3) |
|
: line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1); |
|
auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1); |
|
auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1); |
|
auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1); |
|
auto index = line.substr(0, comma_pos[0]); |
|
int where = 0; |
|
for ( ; where < int(sentence.size()); ++where) { |
|
if (sentence[where] == '_') break; |
|
} |
|
if (where == int(sentence.size())) { |
|
LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str()); |
|
continue; |
|
} |
|
std::istringstream stream(answer.c_str()); |
|
int i_answer; stream >> i_answer; |
|
if (stream.fail() || i_answer < 1 || i_answer > 2) { |
|
LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str()); |
|
continue; |
|
} |
|
result.emplace_back(); |
|
auto& wg = result.back(); |
|
wg.first = sentence.substr(0, where); |
|
wg.second = sentence.substr(where + 1, sentence.size() - where - 1); |
|
wg.choices[0] = std::move(choice1); |
|
wg.choices[1] = std::move(choice2); |
|
wg.answer = i_answer; |
|
} |
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void winogrande_score(llama_context * ctx, const common_params & params) { |
|
|
|
constexpr int k_min_trailing_ctx = 3; |
|
|
|
auto data = load_winogrande_from_csv(params.prompt); |
|
if (data.empty()) { |
|
LOG_ERR("%s: no tasks\n", __func__); |
|
return; |
|
} |
|
|
|
LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size()); |
|
|
|
if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) { |
|
LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks); |
|
std::mt19937 rng(1); |
|
std::vector<int> aux(data.size()); |
|
for (int i = 0; i < int(data.size()); ++i) { |
|
aux[i] = i; |
|
} |
|
float scale = 1/(1.f + (float)rng.max()); |
|
std::vector<winogrande_entry> selected; |
|
selected.resize(params.winogrande_tasks); |
|
for (int i = 0; i < int(params.winogrande_tasks); ++i) { |
|
int j = int(scale*rng()*aux.size()); |
|
selected[i] = std::move(data[aux[j]]); |
|
aux[j] = aux.back(); |
|
aux.pop_back(); |
|
} |
|
data = std::move(selected); |
|
} |
|
|
|
LOG_INF("%s : tokenizing selected tasks\n", __func__); |
|
|
|
for (auto & task : data) { |
|
task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true); |
|
task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true); |
|
|
|
task.common_prefix = 0; |
|
for (size_t k = 0; k < task.seq_tokens[0].size(); k++) { |
|
if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) { |
|
break; |
|
} |
|
task.common_prefix++; |
|
} |
|
|
|
|
|
task.required_tokens = task.common_prefix + |
|
task.seq_tokens[0].size() - task.common_prefix + |
|
task.seq_tokens[1].size() - task.common_prefix; |
|
|
|
task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size(); |
|
task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size(); |
|
} |
|
|
|
LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__); |
|
|
|
const int n_ctx = llama_n_ctx(ctx); |
|
const int n_batch = params.n_batch; |
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); |
|
|
|
const int max_tasks_per_batch = 128; |
|
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); |
|
|
|
llama_batch batch = llama_batch_init(n_ctx, 0, 2); |
|
|
|
std::vector<float> tok_logits(n_vocab); |
|
|
|
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab); |
|
|
|
std::vector<std::pair<size_t, llama_token>> eval_pairs; |
|
std::vector<float> eval_results; |
|
std::vector<std::thread> workers(std::thread::hardware_concurrency()); |
|
|
|
int n_correct = 0; |
|
int n_done = 0; |
|
|
|
for (size_t i0 = 0; i0 < data.size(); i0++) { |
|
int n_cur = 0; |
|
|
|
size_t i1 = i0; |
|
size_t i_logits = 0; |
|
|
|
common_batch_clear(batch); |
|
|
|
while (n_cur + (int) data[i1].required_tokens <= n_ctx) { |
|
int n_logits = 0; |
|
const int s0 = 2*(i1 - i0); |
|
if (s0 + 2 > max_seq) { |
|
break; |
|
} |
|
|
|
for (size_t i = 0; i < data[i1].common_prefix; ++i) { |
|
common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false); |
|
} |
|
batch.logits[batch.n_tokens - 1] = true; |
|
n_logits += 1; |
|
|
|
for (int s = 0; s < 2; ++s) { |
|
|
|
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) { |
|
common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true); |
|
n_logits += 1; |
|
} |
|
} |
|
|
|
data[i1].i_logits = i_logits; |
|
i_logits += n_logits; |
|
|
|
n_cur += data[i1].required_tokens; |
|
if (++i1 == data.size()) { |
|
break; |
|
} |
|
} |
|
|
|
if (i0 == i1) { |
|
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); |
|
return; |
|
} |
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
|
|
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { |
|
LOG_ERR("%s: llama_decode() failed\n", __func__); |
|
return; |
|
} |
|
|
|
eval_pairs.clear(); |
|
for (size_t i = i0; i < i1; ++i) { |
|
auto & task = data[i]; |
|
|
|
const bool skip_choice = |
|
task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && |
|
task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; |
|
|
|
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; |
|
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; |
|
size_t li = n_base1 - task.common_prefix; |
|
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { |
|
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]); |
|
} |
|
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; |
|
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; |
|
|
|
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix; |
|
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { |
|
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]); |
|
} |
|
} |
|
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); |
|
|
|
size_t ir = 0; |
|
for (size_t i = i0; i < i1; ++i) { |
|
auto & task = data[i]; |
|
|
|
const bool skip_choice = |
|
task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && |
|
task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; |
|
|
|
float score_1st = 0; |
|
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; |
|
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; |
|
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { |
|
score_1st += eval_results[ir++]; |
|
} |
|
score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st); |
|
|
|
float score_2nd = 0; |
|
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; |
|
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; |
|
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { |
|
score_2nd += eval_results[ir++]; |
|
} |
|
score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd); |
|
|
|
int result = score_1st > score_2nd ? 1 : 2; |
|
|
|
if (result == task.answer) { |
|
++n_correct; |
|
} |
|
++n_done; |
|
|
|
|
|
LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer); |
|
} |
|
|
|
i0 = i1 - 1; |
|
} |
|
|
|
LOG("\n"); |
|
|
|
if (n_done < 100) return; |
|
|
|
const float p = 1.f*n_correct/n_done; |
|
const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1)); |
|
|
|
LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma); |
|
} |
|
|
|
static bool deserialize_string(std::istream & in, std::string & str) { |
|
uint32_t size; |
|
if (!in.read((char *)&size, sizeof(size)).fail()) { |
|
str.resize(size); |
|
if (!in.read((char *)&str[0], size).fail()) return true; |
|
} |
|
return false; |
|
} |
|
|
|
struct multiple_choice_answers { |
|
std::vector<std::string> answers; |
|
std::vector<int> labels; |
|
bool deserialize(std::istream& in) { |
|
uint32_t n; |
|
in.read((char *)&n, sizeof(n)); |
|
if (in.fail() || n > 100) return false; |
|
answers.resize(n); |
|
labels.resize(n); |
|
for (auto& a : answers) { |
|
if (!deserialize_string(in, a)) return false; |
|
} |
|
in.read((char *)labels.data(), n*sizeof(int)); |
|
return !in.fail(); |
|
} |
|
}; |
|
|
|
struct multiple_choice_task { |
|
std::string question; |
|
multiple_choice_answers mc1; |
|
multiple_choice_answers mc2; |
|
bool deserialize(std::istream& in) { |
|
if (!deserialize_string(in, question)) return false; |
|
return mc1.deserialize(in) && mc2.deserialize(in); |
|
} |
|
|
|
|
|
size_t i_logits; |
|
size_t common_prefix; |
|
size_t required_tokens; |
|
std::vector<std::vector<llama_token>> seq_tokens; |
|
std::vector<float> log_probs; |
|
}; |
|
|
|
static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) { |
|
if (task.question.empty() || task.mc1.answers.empty()) { |
|
if (log_error) { |
|
LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__); |
|
} |
|
return false; |
|
} |
|
task.seq_tokens.reserve(task.mc1.answers.size()); |
|
for (auto& answer : task.mc1.answers) { |
|
if (answer.empty()) { |
|
if (log_error) { |
|
LOG_ERR("%s: found empty answer\n", __func__); |
|
} |
|
return false; |
|
} |
|
task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true)); |
|
} |
|
auto min_len = task.seq_tokens.front().size(); |
|
for (auto& seq : task.seq_tokens) { |
|
min_len = std::min(min_len, seq.size()); |
|
} |
|
task.common_prefix = 0; |
|
for (size_t k = 0; k < min_len; ++k) { |
|
auto token = task.seq_tokens[0][k]; |
|
bool all_same = true; |
|
for (size_t i = 1; i < task.seq_tokens.size(); ++i) { |
|
if (task.seq_tokens[i][k] != token) { |
|
all_same = false; |
|
break; |
|
} |
|
} |
|
if (!all_same) { |
|
break; |
|
} |
|
++task.common_prefix; |
|
} |
|
task.required_tokens = task.common_prefix; |
|
for (auto& seq : task.seq_tokens) { |
|
task.required_tokens += seq.size() - task.common_prefix; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void multiple_choice_score(llama_context * ctx, const common_params & params) { |
|
|
|
std::istringstream strstream(params.prompt); |
|
uint32_t n_task; |
|
strstream.read((char *)&n_task, sizeof(n_task)); |
|
if (strstream.fail() || n_task == 0) { |
|
LOG_ERR("%s: no tasks\n", __func__); |
|
return; |
|
} |
|
LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task); |
|
std::vector<uint32_t> task_pos(n_task); |
|
strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t)); |
|
if (strstream.fail()) { |
|
LOG_ERR("%s: failed to read task positions from prompt\n", __func__); |
|
return; |
|
} |
|
|
|
std::vector<multiple_choice_task> tasks; |
|
if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) { |
|
|
|
tasks.resize(n_task); |
|
LOG_INF("%s: reading tasks", __func__); |
|
int n_dot = std::max((int) n_task/100, 1); |
|
int i = 0; |
|
for (auto& task : tasks) { |
|
++i; |
|
if (!task.deserialize(strstream)) { |
|
LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task); |
|
return; |
|
} |
|
if (i%n_dot == 0) LOG("."); |
|
} |
|
LOG("done\n"); |
|
} |
|
else { |
|
LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task); |
|
std::mt19937 rng(1); |
|
std::vector<int> aux(n_task); |
|
for (uint32_t i = 0; i < n_task; ++i) aux[i] = i; |
|
float scale = 1.f/(1.f + (float)std::mt19937::max()); |
|
tasks.resize(params.multiple_choice_tasks); |
|
for (auto& task : tasks) { |
|
int j = (int)(scale * rng() * aux.size()); |
|
int idx = aux[j]; |
|
aux[j] = aux.back(); |
|
aux.pop_back(); |
|
strstream.seekg(task_pos[idx], std::ios::beg); |
|
if (!task.deserialize(strstream)) { |
|
LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]); |
|
return; |
|
} |
|
} |
|
n_task = params.multiple_choice_tasks; |
|
} |
|
|
|
LOG_INF("%s: preparing task data", __func__); |
|
if (n_task > 500) { |
|
LOG("..."); |
|
std::atomic<int> counter(0); |
|
std::atomic<int> n_bad(0); |
|
auto prepare = [&counter, &n_bad, &tasks, ctx] () { |
|
int num_tasks = tasks.size(); |
|
int n_bad_local = 0; |
|
while (true) { |
|
int first = counter.fetch_add(K_TOKEN_CHUNK); |
|
if (first >= num_tasks) { |
|
if (n_bad_local > 0) n_bad += n_bad_local; |
|
break; |
|
} |
|
int last = std::min(first + K_TOKEN_CHUNK, num_tasks); |
|
for (int i = first; i < last; ++i) { |
|
if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local; |
|
} |
|
} |
|
}; |
|
size_t max_thread = std::thread::hardware_concurrency(); |
|
max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK); |
|
std::vector<std::thread> workers(max_thread-1); |
|
for (auto& w : workers) w = std::thread(prepare); |
|
prepare(); |
|
for (auto& w : workers) w.join(); |
|
LOG("done\n"); |
|
int nbad = n_bad; |
|
if (nbad > 0) { |
|
LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad); |
|
return; |
|
} |
|
} else { |
|
int n_dot = std::max((int) n_task/100, 1); |
|
int i_task = 0; |
|
for (auto& task : tasks) { |
|
++i_task; |
|
if (!multiple_choice_prepare_one_task(ctx, task, true)) { |
|
return; |
|
} |
|
if (i_task%n_dot == 0) { |
|
LOG("."); |
|
} |
|
} |
|
LOG("done\n"); |
|
} |
|
|
|
LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size()); |
|
|
|
LOG("\ntask\tacc_norm\n"); |
|
|
|
const int n_ctx = llama_n_ctx(ctx); |
|
const int n_batch = params.n_batch; |
|
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); |
|
|
|
const int max_tasks_per_batch = 32; |
|
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); |
|
|
|
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); |
|
|
|
std::vector<float> tok_logits(n_vocab); |
|
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab); |
|
|
|
std::vector<std::pair<size_t, llama_token>> eval_pairs; |
|
std::vector<float> eval_results; |
|
std::vector<std::thread> workers(std::thread::hardware_concurrency()); |
|
std::vector<int> batch_indeces; |
|
|
|
int n_done = 0; |
|
int n_correct = 0; |
|
int n_tot_answers = 0; |
|
|
|
for (size_t i0 = 0; i0 < tasks.size(); i0++) { |
|
int n_cur = 0; |
|
|
|
size_t i1 = i0; |
|
size_t i_logits = 0; |
|
|
|
common_batch_clear(batch); |
|
|
|
|
|
|
|
|
|
|
|
int s0 = 0; |
|
while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) { |
|
auto& cur_task = tasks[i1]; |
|
int n_logits = 0; |
|
|
|
int num_answers = cur_task.seq_tokens.size(); |
|
if (s0 + num_answers > max_seq) { |
|
break; |
|
} |
|
|
|
if (int(batch_indeces.size()) != num_answers) { |
|
batch_indeces.resize(num_answers); |
|
} |
|
for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s; |
|
|
|
for (size_t i = 0; i < cur_task.common_prefix; ++i) { |
|
|
|
common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false); |
|
} |
|
batch.logits[batch.n_tokens - 1] = true; |
|
n_logits += 1; |
|
|
|
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { |
|
const size_t seq_tokens_size = cur_task.seq_tokens[s].size(); |
|
|
|
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) { |
|
const bool needs_logits = i < seq_tokens_size - 1; |
|
common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits); |
|
n_logits += needs_logits; |
|
} |
|
} |
|
|
|
s0 += num_answers; |
|
|
|
cur_task.i_logits = i_logits; |
|
i_logits += n_logits; |
|
|
|
n_cur += cur_task.required_tokens; |
|
if (++i1 == tasks.size()) { |
|
break; |
|
} |
|
} |
|
|
|
if (i0 == i1) { |
|
LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); |
|
return; |
|
} |
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
|
|
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { |
|
LOG_ERR("%s: llama_decode() failed\n", __func__); |
|
return; |
|
} |
|
|
|
|
|
|
|
eval_pairs.clear(); |
|
for (size_t i = i0; i < i1; ++i) { |
|
auto& cur_task = tasks[i]; |
|
size_t li = 1; |
|
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { |
|
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { |
|
eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]); |
|
} |
|
} |
|
} |
|
|
|
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); |
|
|
|
size_t ir = 0; |
|
|
|
|
|
for (size_t i = i0; i < i1; ++i) { |
|
auto & cur_task = tasks[i]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float)); |
|
|
|
const auto first_probs = softmax(tok_logits); |
|
|
|
cur_task.log_probs.resize(cur_task.seq_tokens.size()); |
|
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { |
|
size_t count = 1; |
|
float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]); |
|
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { |
|
|
|
++count; |
|
log_prob += eval_results[ir++]; |
|
} |
|
cur_task.log_probs[s] = log_prob / count; |
|
|
|
|
|
} |
|
|
|
|
|
size_t logprob_max_idx = 0; |
|
float logprob_max_val = cur_task.log_probs[0]; |
|
for (size_t s = 1; s < cur_task.log_probs.size(); s++) { |
|
if (cur_task.log_probs[s] > logprob_max_val) { |
|
logprob_max_val = cur_task.log_probs[s]; |
|
logprob_max_idx = s; |
|
} |
|
} |
|
|
|
n_tot_answers += cur_task.log_probs.size(); |
|
if (cur_task.mc1.labels[logprob_max_idx] == 1) { |
|
++n_correct; |
|
} |
|
++n_done; |
|
|
|
|
|
LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done); |
|
} |
|
|
|
i0 = i1 - 1; |
|
} |
|
|
|
llama_batch_free(batch); |
|
|
|
if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return; |
|
|
|
float p = 1.f*n_correct/n_done; |
|
float sigma = sqrt(p*(1-p)/(n_done-1)); |
|
LOG("\n"); |
|
LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); |
|
p = 1.f*n_done/n_tot_answers; |
|
sigma = sqrt(p*(1-p)/(n_done-1)); |
|
LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); |
|
|
|
LOG_INF("\n"); |
|
} |
|
|
|
static void kl_divergence(llama_context * ctx, const common_params & params) { |
|
if (params.logits_file.empty()) { |
|
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__); |
|
return; |
|
} |
|
std::ifstream in(params.logits_file.c_str(), std::ios::binary); |
|
if (!in) { |
|
LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str()); |
|
return; |
|
} |
|
{ |
|
char check[9]; check[8] = 0; |
|
in.read(check, 8); |
|
if (in.fail() || strncmp("_logits_", check, 8) != 0) { |
|
LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str()); |
|
return; |
|
} |
|
} |
|
|
|
uint32_t n_ctx; |
|
in.read((char *)&n_ctx, sizeof(n_ctx)); |
|
if (n_ctx > llama_n_ctx(ctx)) { |
|
LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n", |
|
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx); |
|
} |
|
|
|
int n_vocab; |
|
int n_chunk; |
|
in.read((char *)&n_vocab, sizeof(n_vocab)); |
|
in.read((char *)&n_chunk, sizeof(n_chunk)); |
|
if (in.fail()) { |
|
LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); |
|
return; |
|
} |
|
if (n_vocab != llama_n_vocab(llama_get_model(ctx))) { |
|
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx))); |
|
} |
|
|
|
std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk); |
|
if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) { |
|
LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str()); |
|
return; |
|
} |
|
|
|
const int n_batch = params.n_batch; |
|
const int num_batches = (n_ctx + n_batch - 1)/n_batch; |
|
const int nv = 2*((n_vocab + 1)/2) + 4; |
|
const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); |
|
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); |
|
|
|
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); |
|
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); |
|
std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); |
|
std::vector<float> logits; |
|
if (num_batches > 1) { |
|
logits.reserve(size_t(n_ctx) * n_vocab); |
|
} |
|
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1); |
|
|
|
auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) { |
|
if (count < 1) { |
|
return std::make_pair(0., 0.); |
|
} |
|
double f = sum/count; |
|
double df = sum2/count - f*f; |
|
df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.; |
|
return std::make_pair(f, df); |
|
}; |
|
auto covariance = [] (double suma, double sumb, double sumab, size_t count) { |
|
if (count < 10) { |
|
return 0.0; |
|
} |
|
double var = sumab/count - (suma/count)*(sumb/count); |
|
var /= count - 1; |
|
return var; |
|
}; |
|
|
|
kl_divergence_result kld; |
|
auto kld_ptr = kld_values.data(); |
|
auto p_diff_ptr = p_diff_values.data(); |
|
|
|
for (int i = 0; i < n_chunk; ++i) { |
|
const int start = i * n_ctx; |
|
const int end = start + n_ctx; |
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now(); |
|
|
|
if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) { |
|
LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i); |
|
return; |
|
} |
|
|
|
|
|
llama_kv_cache_clear(ctx); |
|
|
|
llama_batch batch = llama_batch_init(n_batch, 0, 1); |
|
|
|
for (int j = 0; j < num_batches; ++j) { |
|
const int batch_start = start + j * n_batch; |
|
const int batch_size = std::min(end - batch_start, n_batch); |
|
|
|
|
|
const auto token_org = tokens[batch_start]; |
|
|
|
|
|
if (add_bos && j == 0) { |
|
tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); |
|
} |
|
|
|
common_batch_clear(batch); |
|
for (int i = 0; i < batch_size; i++) { |
|
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true); |
|
} |
|
|
|
if (llama_decode(ctx, batch)) { |
|
LOG_ERR("%s : failed to eval\n", __func__); |
|
llama_batch_free(batch); |
|
return; |
|
} |
|
|
|
|
|
tokens[batch_start] = token_org; |
|
|
|
if (num_batches > 1) { |
|
const auto * batch_logits = llama_get_logits(ctx); |
|
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab); |
|
} |
|
} |
|
|
|
llama_batch_free(batch); |
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now(); |
|
|
|
if (i == 0) { |
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count(); |
|
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); |
|
int total_seconds = (int)(t_total * n_chunk); |
|
if (total_seconds >= 60*60) { |
|
LOG("%d hours ", total_seconds / (60*60)); |
|
total_seconds = total_seconds % (60*60); |
|
} |
|
LOG("%.2f minutes\n", total_seconds / 60.0); |
|
} |
|
LOG("\n"); |
|
LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n"); |
|
|
|
const int first = n_ctx/2; |
|
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); |
|
process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, |
|
workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr); |
|
p_diff_ptr += n_ctx - 1 - first; |
|
kld_ptr += n_ctx - 1 - first; |
|
|
|
LOG("%4d", i+1); |
|
|
|
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); |
|
const double ppl_val = exp(log_ppl.first); |
|
const double ppl_unc = ppl_val * log_ppl.second; |
|
LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc); |
|
|
|
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); |
|
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); |
|
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; |
|
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); |
|
LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc); |
|
|
|
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); |
|
LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second); |
|
|
|
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); |
|
const double p_diff_rms_val = sqrt(p_diff_mse.first); |
|
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; |
|
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); |
|
|
|
double p_top_val = 1.*kld.n_same_top/kld.count; |
|
double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1)); |
|
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc); |
|
|
|
LOG("\n"); |
|
|
|
logits.clear(); |
|
} |
|
LOG("\n"); |
|
|
|
if (kld.count < 100) return; |
|
|
|
std::sort(kld_values.begin(), kld_values.end()); |
|
std::sort(p_diff_values.begin(), p_diff_values.end()); |
|
|
|
LOG("====== Perplexity statistics ======\n"); |
|
|
|
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); |
|
const double ppl_val = exp(log_ppl.first); |
|
const double ppl_unc = ppl_val * log_ppl.second; |
|
LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc); |
|
|
|
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); |
|
const double ppl_base_val = exp(log_ppl_base.first); |
|
const double ppl_base_unc = ppl_base_val * log_ppl_base.second; |
|
LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc); |
|
|
|
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); |
|
|
|
const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second); |
|
LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor); |
|
|
|
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; |
|
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); |
|
LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc); |
|
|
|
const double ppl_ratio_val = exp(log_ppl_ratio_val); |
|
const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; |
|
LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc); |
|
|
|
const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov; |
|
const double ppl_diff_val = ppl_val - ppl_base_val; |
|
const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov); |
|
LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc); |
|
|
|
LOG("\n"); |
|
|
|
LOG("====== KL divergence statistics ======\n"); |
|
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); |
|
LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second); |
|
auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1]) |
|
: kld_values[kld_values.size()/2]; |
|
|
|
auto percentile = [] (std::vector<float> values, float fraction) { |
|
if (fraction <= 0) return values.front(); |
|
if (fraction >= 1) return values.back(); |
|
float p = fraction*(values.size() - 1); |
|
size_t ip = size_t(p); p -= ip; |
|
return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)]; |
|
}; |
|
|
|
LOG("Maximum KLD: %10.6f\n", kld_values.back()); |
|
LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f)); |
|
LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); |
|
LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); |
|
LOG("Median KLD: %10.6f\n", kld_median); |
|
LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f)); |
|
LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f)); |
|
LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f)); |
|
LOG("Minimum KLD: %10.6f\n", kld_values.front()); |
|
|
|
LOG("\n"); |
|
|
|
LOG("====== Token probability statistics ======\n"); |
|
|
|
auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count); |
|
LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second); |
|
|
|
auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1]) |
|
: p_diff_values[p_diff_values.size()/2]; |
|
|
|
LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back()); |
|
LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f)); |
|
LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f)); |
|
LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f)); |
|
LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f)); |
|
LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f)); |
|
LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median); |
|
LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f)); |
|
LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f)); |
|
LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f)); |
|
LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f)); |
|
LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f)); |
|
LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front()); |
|
|
|
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); |
|
|
|
|
|
const double p_diff_rms_val = sqrt(p_diff_mse.first); |
|
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; |
|
LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); |
|
|
|
const double same_top_p = 1.0*kld.n_same_top/kld.count; |
|
LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1))); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
common_params params; |
|
|
|
params.n_ctx = 512; |
|
params.logits_all = true; |
|
params.escape = false; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
const int32_t n_ctx = params.n_ctx; |
|
|
|
if (n_ctx <= 0) { |
|
LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__); |
|
return 1; |
|
} |
|
|
|
const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence; |
|
|
|
if (ppl) { |
|
const int32_t n_seq = std::max(1, params.n_batch / n_ctx); |
|
const int32_t n_kv = n_seq * n_ctx; |
|
|
|
params.n_parallel = n_seq; |
|
params.n_ctx = n_kv; |
|
|
|
params.n_batch = std::min(params.n_batch, n_kv); |
|
} else { |
|
params.n_batch = std::min(params.n_batch, params.n_ctx); |
|
if (params.kl_divergence) { |
|
params.n_parallel = 1; |
|
} else { |
|
|
|
params.n_parallel = std::max(4, params.n_parallel); |
|
} |
|
} |
|
|
|
if (params.ppl_stride > 0) { |
|
LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n", |
|
params.n_ctx, params.n_ctx + params.ppl_stride/2); |
|
params.n_ctx += params.ppl_stride/2; |
|
} |
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
|
|
common_init_result llama_init = common_init_from_params(params); |
|
|
|
llama_model * model = llama_init.model; |
|
llama_context * ctx = llama_init.context; |
|
if (model == NULL) { |
|
LOG_ERR("%s: unable to load model\n", __func__); |
|
return 1; |
|
} |
|
|
|
const int n_ctx_train = llama_n_ctx_train(model); |
|
|
|
if (params.n_ctx > n_ctx_train) { |
|
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", |
|
__func__, n_ctx_train, params.n_ctx); |
|
} |
|
|
|
|
|
{ |
|
LOG_INF("\n"); |
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str()); |
|
} |
|
|
|
struct results_perplexity results; |
|
if (params.hellaswag) { |
|
hellaswag_score(ctx, params); |
|
} else if (params.winogrande) { |
|
winogrande_score(ctx, params); |
|
} else if (params.multiple_choice) { |
|
multiple_choice_score(ctx, params); |
|
} else if (params.kl_divergence) { |
|
kl_divergence(ctx, params); |
|
} else { |
|
results = perplexity(ctx, params, n_ctx); |
|
} |
|
|
|
LOG("\n"); |
|
llama_perf_context_print(ctx); |
|
|
|
llama_free(ctx); |
|
llama_free_model(model); |
|
|
|
llama_backend_free(); |
|
|
|
return 0; |
|
} |
|
|