|
#if defined(_WIN32) |
|
#include <windows.h> |
|
#else |
|
#include <unistd.h> |
|
#endif |
|
|
|
#include <climits> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <iostream> |
|
#include <sstream> |
|
#include <string> |
|
#include <unordered_map> |
|
#include <vector> |
|
|
|
#include "llama-cpp.h" |
|
|
|
typedef std::unique_ptr<char[]> char_array_ptr; |
|
|
|
struct Argument { |
|
std::string flag; |
|
std::string help_text; |
|
}; |
|
|
|
struct Options { |
|
std::string model_path, prompt_non_interactive; |
|
int ngl = 99; |
|
int n_ctx = 2048; |
|
}; |
|
|
|
class ArgumentParser { |
|
public: |
|
ArgumentParser(const char * program_name) : program_name(program_name) {} |
|
|
|
void add_argument(const std::string & flag, std::string & var, const std::string & help_text = "") { |
|
string_args[flag] = &var; |
|
arguments.push_back({flag, help_text}); |
|
} |
|
|
|
void add_argument(const std::string & flag, int & var, const std::string & help_text = "") { |
|
int_args[flag] = &var; |
|
arguments.push_back({flag, help_text}); |
|
} |
|
|
|
int parse(int argc, const char ** argv) { |
|
for (int i = 1; i < argc; ++i) { |
|
std::string arg = argv[i]; |
|
if (string_args.count(arg)) { |
|
if (i + 1 < argc) { |
|
*string_args[arg] = argv[++i]; |
|
} else { |
|
fprintf(stderr, "error: missing value for %s\n", arg.c_str()); |
|
print_usage(); |
|
return 1; |
|
} |
|
} else if (int_args.count(arg)) { |
|
if (i + 1 < argc) { |
|
if (parse_int_arg(argv[++i], *int_args[arg]) != 0) { |
|
fprintf(stderr, "error: invalid value for %s: %s\n", arg.c_str(), argv[i]); |
|
print_usage(); |
|
return 1; |
|
} |
|
} else { |
|
fprintf(stderr, "error: missing value for %s\n", arg.c_str()); |
|
print_usage(); |
|
return 1; |
|
} |
|
} else { |
|
fprintf(stderr, "error: unrecognized argument %s\n", arg.c_str()); |
|
print_usage(); |
|
return 1; |
|
} |
|
} |
|
|
|
if (string_args["-m"]->empty()) { |
|
fprintf(stderr, "error: -m is required\n"); |
|
print_usage(); |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
private: |
|
const char * program_name; |
|
std::unordered_map<std::string, std::string *> string_args; |
|
std::unordered_map<std::string, int *> int_args; |
|
std::vector<Argument> arguments; |
|
|
|
int parse_int_arg(const char * arg, int & value) { |
|
char * end; |
|
const long val = std::strtol(arg, &end, 10); |
|
if (*end == '\0' && val >= INT_MIN && val <= INT_MAX) { |
|
value = static_cast<int>(val); |
|
return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
void print_usage() const { |
|
printf("\nUsage:\n"); |
|
printf(" %s [OPTIONS]\n\n", program_name); |
|
printf("Options:\n"); |
|
for (const auto & arg : arguments) { |
|
printf(" %-10s %s\n", arg.flag.c_str(), arg.help_text.c_str()); |
|
} |
|
|
|
printf("\n"); |
|
} |
|
}; |
|
|
|
class LlamaData { |
|
public: |
|
llama_model_ptr model; |
|
llama_sampler_ptr sampler; |
|
llama_context_ptr context; |
|
std::vector<llama_chat_message> messages; |
|
|
|
int init(const Options & opt) { |
|
model = initialize_model(opt.model_path, opt.ngl); |
|
if (!model) { |
|
return 1; |
|
} |
|
|
|
context = initialize_context(model, opt.n_ctx); |
|
if (!context) { |
|
return 1; |
|
} |
|
|
|
sampler = initialize_sampler(); |
|
return 0; |
|
} |
|
|
|
private: |
|
|
|
llama_model_ptr initialize_model(const std::string & model_path, const int ngl) { |
|
llama_model_params model_params = llama_model_default_params(); |
|
model_params.n_gpu_layers = ngl; |
|
|
|
llama_model_ptr model(llama_load_model_from_file(model_path.c_str(), model_params)); |
|
if (!model) { |
|
fprintf(stderr, "%s: error: unable to load model\n", __func__); |
|
} |
|
|
|
return model; |
|
} |
|
|
|
|
|
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) { |
|
llama_context_params ctx_params = llama_context_default_params(); |
|
ctx_params.n_ctx = n_ctx; |
|
ctx_params.n_batch = n_ctx; |
|
|
|
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params)); |
|
if (!context) { |
|
fprintf(stderr, "%s: error: failed to create the llama_context\n", __func__); |
|
} |
|
|
|
return context; |
|
} |
|
|
|
|
|
llama_sampler_ptr initialize_sampler() { |
|
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params())); |
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1)); |
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f)); |
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); |
|
|
|
return sampler; |
|
} |
|
}; |
|
|
|
|
|
static void add_message(const char * role, const std::string & text, LlamaData & llama_data, |
|
std::vector<char_array_ptr> & owned_content) { |
|
char_array_ptr content(new char[text.size() + 1]); |
|
std::strcpy(content.get(), text.c_str()); |
|
llama_data.messages.push_back({role, content.get()}); |
|
owned_content.push_back(std::move(content)); |
|
} |
|
|
|
|
|
static int apply_chat_template(const LlamaData & llama_data, std::vector<char> & formatted, const bool append) { |
|
int result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(), |
|
llama_data.messages.size(), append, formatted.data(), formatted.size()); |
|
if (result > static_cast<int>(formatted.size())) { |
|
formatted.resize(result); |
|
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(), |
|
llama_data.messages.size(), append, formatted.data(), formatted.size()); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt, |
|
std::vector<llama_token> & prompt_tokens) { |
|
const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true); |
|
prompt_tokens.resize(n_prompt_tokens); |
|
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, |
|
true) < 0) { |
|
GGML_ABORT("failed to tokenize the prompt\n"); |
|
} |
|
|
|
return n_prompt_tokens; |
|
} |
|
|
|
|
|
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) { |
|
const int n_ctx = llama_n_ctx(ctx.get()); |
|
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get()); |
|
if (n_ctx_used + batch.n_tokens > n_ctx) { |
|
printf("\033[0m\n"); |
|
fprintf(stderr, "context size exceeded\n"); |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) { |
|
char buf[256]; |
|
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true); |
|
if (n < 0) { |
|
GGML_ABORT("failed to convert token to piece\n"); |
|
} |
|
|
|
piece = std::string(buf, n); |
|
return 0; |
|
} |
|
|
|
static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) { |
|
printf("%s", piece.c_str()); |
|
fflush(stdout); |
|
response += piece; |
|
} |
|
|
|
|
|
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) { |
|
std::vector<llama_token> prompt_tokens; |
|
const int n_prompt_tokens = tokenize_prompt(llama_data.model, prompt, prompt_tokens); |
|
if (n_prompt_tokens < 0) { |
|
return 1; |
|
} |
|
|
|
|
|
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); |
|
llama_token new_token_id; |
|
while (true) { |
|
check_context_size(llama_data.context, batch); |
|
if (llama_decode(llama_data.context.get(), batch)) { |
|
GGML_ABORT("failed to decode\n"); |
|
} |
|
|
|
|
|
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1); |
|
if (llama_token_is_eog(llama_data.model.get(), new_token_id)) { |
|
break; |
|
} |
|
|
|
std::string piece; |
|
if (convert_token_to_string(llama_data.model, new_token_id, piece)) { |
|
return 1; |
|
} |
|
|
|
print_word_and_concatenate_to_response(piece, response); |
|
|
|
|
|
batch = llama_batch_get_one(&new_token_id, 1); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_arguments(const int argc, const char ** argv, Options & opt) { |
|
ArgumentParser parser(argv[0]); |
|
parser.add_argument("-m", opt.model_path, "model"); |
|
parser.add_argument("-p", opt.prompt_non_interactive, "prompt"); |
|
parser.add_argument("-c", opt.n_ctx, "context_size"); |
|
parser.add_argument("-ngl", opt.ngl, "n_gpu_layers"); |
|
if (parser.parse(argc, argv)) { |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int read_user_input(std::string & user) { |
|
std::getline(std::cin, user); |
|
return user.empty(); |
|
} |
|
|
|
|
|
static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) { |
|
|
|
printf("\033[33m"); |
|
if (generate(llama_data, prompt, response)) { |
|
fprintf(stderr, "failed to generate response\n"); |
|
return 1; |
|
} |
|
|
|
|
|
printf("\n\033[0m"); |
|
return 0; |
|
} |
|
|
|
|
|
static int apply_chat_template_with_error_handling(const LlamaData & llama_data, std::vector<char> & formatted, |
|
const bool is_user_input, int & output_length) { |
|
const int new_len = apply_chat_template(llama_data, formatted, is_user_input); |
|
if (new_len < 0) { |
|
fprintf(stderr, "failed to apply the chat template\n"); |
|
return -1; |
|
} |
|
|
|
output_length = new_len; |
|
return 0; |
|
} |
|
|
|
|
|
static bool handle_user_input(std::string & user_input, const std::string & prompt_non_interactive) { |
|
if (!prompt_non_interactive.empty()) { |
|
user_input = prompt_non_interactive; |
|
return true; |
|
} |
|
|
|
printf("\033[32m> \033[0m"); |
|
return !read_user_input(user_input); |
|
} |
|
|
|
|
|
static int chat_loop(LlamaData & llama_data, std::string & prompt_non_interactive) { |
|
std::vector<char_array_ptr> owned_content; |
|
std::vector<char> fmtted(llama_n_ctx(llama_data.context.get())); |
|
int prev_len = 0; |
|
|
|
while (true) { |
|
|
|
std::string user_input; |
|
if (!handle_user_input(user_input, prompt_non_interactive)) { |
|
break; |
|
} |
|
|
|
add_message("user", prompt_non_interactive.empty() ? user_input : prompt_non_interactive, llama_data, |
|
owned_content); |
|
|
|
int new_len; |
|
if (apply_chat_template_with_error_handling(llama_data, fmtted, true, new_len) < 0) { |
|
return 1; |
|
} |
|
|
|
std::string prompt(fmtted.begin() + prev_len, fmtted.begin() + new_len); |
|
std::string response; |
|
if (generate_response(llama_data, prompt, response)) { |
|
return 1; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static void log_callback(const enum ggml_log_level level, const char * text, void *) { |
|
if (level == GGML_LOG_LEVEL_ERROR) { |
|
fprintf(stderr, "%s", text); |
|
} |
|
} |
|
|
|
static bool is_stdin_a_terminal() { |
|
#if defined(_WIN32) |
|
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE); |
|
DWORD mode; |
|
return GetConsoleMode(hStdin, &mode); |
|
#else |
|
return isatty(STDIN_FILENO); |
|
#endif |
|
} |
|
|
|
static std::string read_pipe_data() { |
|
std::ostringstream result; |
|
result << std::cin.rdbuf(); |
|
return result.str(); |
|
} |
|
|
|
int main(int argc, const char ** argv) { |
|
Options opt; |
|
if (parse_arguments(argc, argv, opt)) { |
|
return 1; |
|
} |
|
|
|
if (!is_stdin_a_terminal()) { |
|
if (!opt.prompt_non_interactive.empty()) { |
|
opt.prompt_non_interactive += "\n\n"; |
|
} |
|
|
|
opt.prompt_non_interactive += read_pipe_data(); |
|
} |
|
|
|
llama_log_set(log_callback, nullptr); |
|
LlamaData llama_data; |
|
if (llama_data.init(opt)) { |
|
return 1; |
|
} |
|
|
|
if (chat_loop(llama_data, opt.prompt_non_interactive)) { |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|