|
#include "arg.h" |
|
#include "common.h" |
|
#include "llama.h" |
|
|
|
#include <vector> |
|
#include <cstdio> |
|
|
|
int main(int argc, char ** argv) { |
|
common_params params; |
|
|
|
params.prompt = "The quick brown fox"; |
|
params.sampling.seed = 1234; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) { |
|
return 1; |
|
} |
|
|
|
print_build_info(); |
|
|
|
if (params.n_predict < 0) { |
|
params.n_predict = 16; |
|
} |
|
|
|
auto n_past = 0; |
|
|
|
std::string result0; |
|
std::string result1; |
|
std::string result2; |
|
|
|
|
|
common_init_result llama_init = common_init_from_params(params); |
|
|
|
llama_model * model = llama_init.model; |
|
llama_context * ctx = llama_init.context; |
|
|
|
if (model == nullptr || ctx == nullptr) { |
|
fprintf(stderr, "%s : failed to init\n", __func__); |
|
return 1; |
|
} |
|
|
|
auto sparams = llama_sampler_chain_default_params(); |
|
|
|
llama_sampler * smpl = llama_sampler_chain_init(sparams); |
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sampling.seed)); |
|
|
|
|
|
auto tokens = common_tokenize(ctx, params.prompt, true); |
|
|
|
|
|
llama_batch batch = llama_batch_init(tokens.size(), 0, 1); |
|
for (size_t i = 0; i < tokens.size(); i++) { |
|
common_batch_add(batch, tokens[i], i, {0}, false); |
|
} |
|
batch.logits[batch.n_tokens - 1] = true; |
|
|
|
|
|
llama_decode(ctx, batch); |
|
n_past += batch.n_tokens; |
|
|
|
|
|
{ |
|
std::vector<uint8_t> state_mem(llama_state_get_size(ctx)); |
|
const size_t written = llama_state_get_data(ctx, state_mem.data(), state_mem.size()); |
|
|
|
FILE *fp_write = fopen("dump_state.bin", "wb"); |
|
fwrite(state_mem.data(), 1, written, fp_write); |
|
fclose(fp_write); |
|
|
|
fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size()); |
|
} |
|
|
|
|
|
const auto n_past_saved = n_past; |
|
|
|
|
|
printf("\nfirst run: %s", params.prompt.c_str()); |
|
|
|
for (auto i = 0; i < params.n_predict; i++) { |
|
auto next_token = llama_sampler_sample(smpl, ctx, -1); |
|
auto next_token_str = common_token_to_piece(ctx, next_token); |
|
|
|
printf("%s", next_token_str.c_str()); |
|
result0 += next_token_str; |
|
|
|
common_batch_clear(batch); |
|
common_batch_add(batch, next_token, n_past, {0}, true); |
|
|
|
if (llama_decode(ctx, batch)) { |
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); |
|
llama_batch_free(batch); |
|
llama_free(ctx); |
|
llama_free_model(model); |
|
return 1; |
|
} |
|
n_past += 1; |
|
} |
|
|
|
printf("\n\n"); |
|
|
|
|
|
llama_free(ctx); |
|
|
|
|
|
auto * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params)); |
|
|
|
llama_sampler * smpl2 = llama_sampler_chain_init(sparams); |
|
|
|
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sampling.seed)); |
|
|
|
printf("\nsecond run: %s", params.prompt.c_str()); |
|
|
|
|
|
{ |
|
std::vector<uint8_t> state_mem; |
|
|
|
FILE * fp_read = fopen("dump_state.bin", "rb"); |
|
fseek(fp_read, 0, SEEK_END); |
|
state_mem.resize(ftell(fp_read)); |
|
fseek(fp_read, 0, SEEK_SET); |
|
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read); |
|
fclose(fp_read); |
|
|
|
if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) { |
|
fprintf(stderr, "\n%s : failed to read state\n", __func__); |
|
llama_free(ctx2); |
|
llama_free_model(model); |
|
return 1; |
|
} |
|
|
|
fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size()); |
|
} |
|
|
|
|
|
n_past = n_past_saved; |
|
|
|
|
|
for (auto i = 0; i < params.n_predict; i++) { |
|
auto next_token = llama_sampler_sample(smpl2, ctx2, -1); |
|
auto next_token_str = common_token_to_piece(ctx2, next_token); |
|
|
|
printf("%s", next_token_str.c_str()); |
|
result1 += next_token_str; |
|
|
|
common_batch_clear(batch); |
|
common_batch_add(batch, next_token, n_past, {0}, true); |
|
|
|
if (llama_decode(ctx2, batch)) { |
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); |
|
llama_batch_free(batch); |
|
llama_free(ctx2); |
|
llama_free_model(model); |
|
return 1; |
|
} |
|
n_past += 1; |
|
} |
|
|
|
printf("\n\n"); |
|
|
|
llama_free(ctx2); |
|
|
|
if (result0 != result1) { |
|
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__); |
|
return 1; |
|
} |
|
|
|
|
|
auto * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params)); |
|
|
|
llama_sampler * smpl3 = llama_sampler_chain_init(sparams); |
|
|
|
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sampling.seed)); |
|
|
|
printf("\nsingle seq run: %s", params.prompt.c_str()); |
|
|
|
|
|
{ |
|
std::vector<uint8_t> state_mem; |
|
|
|
FILE * fp_read = fopen("dump_state.bin", "rb"); |
|
fseek(fp_read, 0, SEEK_END); |
|
state_mem.resize(ftell(fp_read)); |
|
fseek(fp_read, 0, SEEK_SET); |
|
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read); |
|
fclose(fp_read); |
|
|
|
if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) { |
|
fprintf(stderr, "\n%s : failed to read state\n", __func__); |
|
llama_free(ctx3); |
|
llama_free_model(model); |
|
return 1; |
|
} |
|
|
|
fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size()); |
|
} |
|
|
|
|
|
n_past = n_past_saved; |
|
|
|
|
|
{ |
|
|
|
std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0)); |
|
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0); |
|
if (ncopy != seq_store.size()) { |
|
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size()); |
|
llama_free(ctx3); |
|
llama_free_model(model); |
|
return 1; |
|
} |
|
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy); |
|
|
|
|
|
llama_kv_cache_clear(ctx3); |
|
fprintf(stderr, "%s : kv cache cleared\n", __func__); |
|
|
|
|
|
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1); |
|
if (nset != seq_store.size()) { |
|
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size()); |
|
llama_free(ctx3); |
|
llama_free_model(model); |
|
return 1; |
|
} |
|
fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset); |
|
} |
|
|
|
|
|
for (auto i = 0; i < params.n_predict; i++) { |
|
auto next_token = llama_sampler_sample(smpl3, ctx3, -1); |
|
auto next_token_str = common_token_to_piece(ctx3, next_token); |
|
|
|
printf("%s", next_token_str.c_str()); |
|
result2 += next_token_str; |
|
|
|
common_batch_clear(batch); |
|
common_batch_add(batch, next_token, n_past, {1}, true); |
|
|
|
if (llama_decode(ctx3, batch)) { |
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); |
|
llama_batch_free(batch); |
|
llama_free(ctx3); |
|
llama_free_model(model); |
|
return 1; |
|
} |
|
n_past += 1; |
|
} |
|
|
|
printf("\n"); |
|
|
|
llama_sampler_free(smpl); |
|
llama_sampler_free(smpl2); |
|
llama_sampler_free(smpl3); |
|
|
|
llama_batch_free(batch); |
|
llama_free(ctx3); |
|
llama_free_model(model); |
|
|
|
if (result0 != result2) { |
|
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__); |
|
return 1; |
|
} |
|
|
|
fprintf(stderr, "\n%s : success\n", __func__); |
|
|
|
return 0; |
|
} |
|
|