|
#include "llama.h" |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <string> |
|
#include <vector> |
|
|
|
static void print_usage(int, char ** argv) { |
|
printf("\nexample usage:\n"); |
|
printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]); |
|
printf("\n"); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
|
|
std::string model_path; |
|
|
|
std::string prompt = "Hello my name is"; |
|
|
|
int ngl = 99; |
|
|
|
int n_predict = 32; |
|
|
|
|
|
|
|
{ |
|
int i = 1; |
|
for (; i < argc; i++) { |
|
if (strcmp(argv[i], "-m") == 0) { |
|
if (i + 1 < argc) { |
|
model_path = argv[++i]; |
|
} else { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else if (strcmp(argv[i], "-n") == 0) { |
|
if (i + 1 < argc) { |
|
try { |
|
n_predict = std::stoi(argv[++i]); |
|
} catch (...) { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else if (strcmp(argv[i], "-ngl") == 0) { |
|
if (i + 1 < argc) { |
|
try { |
|
ngl = std::stoi(argv[++i]); |
|
} catch (...) { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else { |
|
|
|
break; |
|
} |
|
} |
|
if (model_path.empty()) { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
if (i < argc) { |
|
prompt = argv[i++]; |
|
for (; i < argc; i++) { |
|
prompt += " "; |
|
prompt += argv[i]; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
ggml_backend_load_all(); |
|
|
|
|
|
|
|
llama_model_params model_params = llama_model_default_params(); |
|
model_params.n_gpu_layers = ngl; |
|
|
|
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); |
|
|
|
if (model == NULL) { |
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__); |
|
return 1; |
|
} |
|
|
|
|
|
|
|
|
|
const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); |
|
|
|
|
|
std::vector<llama_token> prompt_tokens(n_prompt); |
|
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) { |
|
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); |
|
return 1; |
|
} |
|
|
|
|
|
|
|
llama_context_params ctx_params = llama_context_default_params(); |
|
|
|
ctx_params.n_ctx = n_prompt + n_predict - 1; |
|
|
|
ctx_params.n_batch = n_prompt; |
|
|
|
ctx_params.no_perf = false; |
|
|
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params); |
|
|
|
if (ctx == NULL) { |
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); |
|
return 1; |
|
} |
|
|
|
|
|
|
|
auto sparams = llama_sampler_chain_default_params(); |
|
sparams.no_perf = false; |
|
llama_sampler * smpl = llama_sampler_chain_init(sparams); |
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); |
|
|
|
|
|
|
|
for (auto id : prompt_tokens) { |
|
char buf[128]; |
|
int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); |
|
if (n < 0) { |
|
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); |
|
return 1; |
|
} |
|
std::string s(buf, n); |
|
printf("%s", s.c_str()); |
|
} |
|
|
|
|
|
|
|
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); |
|
|
|
|
|
|
|
const auto t_main_start = ggml_time_us(); |
|
int n_decode = 0; |
|
llama_token new_token_id; |
|
|
|
for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) { |
|
|
|
if (llama_decode(ctx, batch)) { |
|
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); |
|
return 1; |
|
} |
|
|
|
n_pos += batch.n_tokens; |
|
|
|
|
|
{ |
|
new_token_id = llama_sampler_sample(smpl, ctx, -1); |
|
|
|
|
|
if (llama_token_is_eog(model, new_token_id)) { |
|
break; |
|
} |
|
|
|
char buf[128]; |
|
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); |
|
if (n < 0) { |
|
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); |
|
return 1; |
|
} |
|
std::string s(buf, n); |
|
printf("%s", s.c_str()); |
|
fflush(stdout); |
|
|
|
|
|
batch = llama_batch_get_one(&new_token_id, 1); |
|
|
|
n_decode += 1; |
|
} |
|
} |
|
|
|
printf("\n"); |
|
|
|
const auto t_main_end = ggml_time_us(); |
|
|
|
fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", |
|
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); |
|
|
|
fprintf(stderr, "\n"); |
|
llama_perf_sampler_print(smpl); |
|
llama_perf_context_print(ctx); |
|
fprintf(stderr, "\n"); |
|
|
|
llama_sampler_free(smpl); |
|
llama_free(ctx); |
|
llama_free_model(model); |
|
|
|
return 0; |
|
} |
|
|