|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <ggml.h> |
|
#include <ggml-alloc.h> |
|
#include <ggml-backend.h> |
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cfloat> |
|
#include <cstdint> |
|
#include <cstring> |
|
#include <cinttypes> |
|
#include <memory> |
|
#include <random> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string> |
|
#include <thread> |
|
#include <future> |
|
#include <vector> |
|
|
|
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { |
|
size_t nels = ggml_nelements(tensor); |
|
std::vector<float> data(nels); |
|
{ |
|
|
|
static const size_t n_threads = std::thread::hardware_concurrency(); |
|
|
|
static std::vector<std::default_random_engine> generators = []() { |
|
std::random_device rd; |
|
std::vector<std::default_random_engine> vec; |
|
vec.reserve(n_threads); |
|
|
|
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); } |
|
return vec; |
|
}(); |
|
|
|
auto init_thread = [&](size_t ith, size_t start, size_t end) { |
|
std::uniform_real_distribution<float> distribution(min, max); |
|
auto & gen = generators[ith]; |
|
for (size_t i = start; i < end; i++) { |
|
data[i] = distribution(gen); |
|
} |
|
}; |
|
|
|
std::vector<std::future<void>> tasks; |
|
tasks.reserve(n_threads); |
|
for (size_t i = 0; i < n_threads; i++) { |
|
size_t start = i*nels/n_threads; |
|
size_t end = (i+1)*nels/n_threads; |
|
tasks.push_back(std::async(std::launch::async, init_thread, i, start, end)); |
|
} |
|
for (auto & t : tasks) { |
|
t.get(); |
|
} |
|
} |
|
|
|
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) { |
|
ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float)); |
|
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) { |
|
GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0); |
|
|
|
|
|
std::vector<float> imatrix(tensor->ne[0], 1.0f); |
|
const float * im = imatrix.data(); |
|
if (!ggml_quantize_requires_imatrix(tensor->type)) { |
|
|
|
|
|
if (data[0] > 0.5f*(min + max)) { |
|
im = nullptr; |
|
} |
|
} |
|
|
|
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels)); |
|
{ |
|
|
|
size_t blck_size = ggml_blck_size(tensor->type); |
|
size_t n_blocks = nels / blck_size; |
|
|
|
auto quantize_thread = [&](size_t start, size_t end) { |
|
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), |
|
start * blck_size, end - start, blck_size, im); |
|
}; |
|
|
|
const size_t min_blocks_per_thread = 1; |
|
const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2, |
|
std::max<size_t>(1, n_blocks / min_blocks_per_thread)); |
|
std::vector<std::future<void>> tasks; |
|
tasks.reserve(n_threads); |
|
for (size_t i = 0; i < n_threads; i++) { |
|
size_t start = i*n_blocks/n_threads; |
|
size_t end = (i+1)*n_blocks/n_threads; |
|
tasks.push_back(std::async(std::launch::async, quantize_thread, start, end)); |
|
} |
|
for (auto & t : tasks) { |
|
t.get(); |
|
} |
|
} |
|
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); |
|
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { |
|
|
|
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor)); |
|
} else if (tensor->type == GGML_TYPE_I64) { |
|
|
|
const size_t nbytes_half = ggml_nbytes(tensor)/2; |
|
ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half); |
|
ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half); |
|
} else { |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
static std::vector<float> tensor_to_float(const ggml_tensor * t) { |
|
std::vector<float> tv; |
|
tv.reserve(ggml_nelements(t)); |
|
|
|
std::vector<uint8_t> buf(ggml_nbytes(t)); |
|
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t)); |
|
|
|
const auto * tt = ggml_get_type_traits(t->type); |
|
size_t bs = ggml_blck_size(t->type); |
|
std::vector<float> vq(ggml_blck_size(t->type)); |
|
bool quantized = ggml_is_quantized(t->type); |
|
|
|
|
|
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) { |
|
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) { |
|
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) { |
|
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) { |
|
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0]; |
|
if (t->type == GGML_TYPE_F16) { |
|
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i])); |
|
} else if (t->type == GGML_TYPE_BF16) { |
|
tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i])); |
|
} else if (t->type == GGML_TYPE_F32) { |
|
tv.push_back(*(float *) &buf[i]); |
|
} else if (t->type == GGML_TYPE_I64) { |
|
tv.push_back((float)*(int64_t *) &buf[i]); |
|
} else if (t->type == GGML_TYPE_I32) { |
|
tv.push_back((float)*(int32_t *) &buf[i]); |
|
} else if (t->type == GGML_TYPE_I16) { |
|
tv.push_back((float)*(int16_t *) &buf[i]); |
|
} else if (t->type == GGML_TYPE_I8) { |
|
tv.push_back((float)*(int8_t *) &buf[i]); |
|
} else if (quantized) { |
|
tt->to_float(&buf[i], vq.data(), bs); |
|
tv.insert(tv.end(), vq.begin(), vq.end()); |
|
} else { |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
return tv; |
|
} |
|
|
|
|
|
static double nmse(const float * a, const float * b, size_t n) { |
|
double mse_a_b = 0.0; |
|
double mse_a_0 = 0.0; |
|
|
|
for (size_t i = 0; i < n; i++) { |
|
float a_i = a[i]; |
|
float b_i = b[i]; |
|
|
|
mse_a_b += (a_i - b_i) * (a_i - b_i); |
|
mse_a_0 += a_i * a_i; |
|
} |
|
|
|
return mse_a_b / mse_a_0; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) { |
|
double sum = 0.0f; |
|
|
|
size_t nvalid = 0; |
|
for (size_t i = 0; i < n; i++) { |
|
if (!expected_vals.empty()) { |
|
bool matches_any = false; |
|
for (const float & ev : expected_vals) { |
|
if (fabsf(a[i] - ev) < 1e-3f) { |
|
matches_any = true; |
|
break; |
|
} |
|
} |
|
if (!matches_any) { |
|
continue; |
|
} |
|
} |
|
|
|
const float asymm = (a[i] - b[i]) / (a[i] + b[i]); |
|
|
|
sum += fabsf(asymm); |
|
nvalid++; |
|
} |
|
|
|
return sum/nvalid; |
|
} |
|
|
|
|
|
|
|
template<typename T> |
|
static std::string var_to_str(const T & x) { |
|
return std::to_string(x); |
|
} |
|
|
|
template<typename T, size_t N> |
|
static std::string var_to_str(const T (&x)[N]) { |
|
std::string s = "["; |
|
for (size_t i = 0; i < N; i++) { |
|
if (i > 0) { |
|
s += ","; |
|
} |
|
s += var_to_str(x[i]); |
|
} |
|
s += "]"; |
|
return s; |
|
} |
|
|
|
template<typename T, size_t N> |
|
static std::string var_to_str(const std::array<T, N> & x) { |
|
std::string s = "["; |
|
for (size_t i = 0; i < N; i++) { |
|
if (i > 0) { |
|
s += ","; |
|
} |
|
s += var_to_str(x[i]); |
|
} |
|
s += "]"; |
|
return s; |
|
} |
|
|
|
static std::string var_to_str(ggml_type type) { |
|
return ggml_type_name(type); |
|
} |
|
|
|
static std::string var_to_str(ggml_op_pool pool) { |
|
switch (pool) { |
|
case GGML_OP_POOL_AVG: return "avg"; |
|
case GGML_OP_POOL_MAX: return "max"; |
|
default: return std::to_string(pool); |
|
} |
|
} |
|
|
|
#define VAR_TO_STR(x) (#x "=" + var_to_str(x)) |
|
|
|
#define VARS_TO_STR1(a) VAR_TO_STR(a) |
|
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b) |
|
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c) |
|
#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d) |
|
#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e) |
|
#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f) |
|
#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g) |
|
#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h) |
|
#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i) |
|
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j) |
|
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k) |
|
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l) |
|
|
|
#ifdef GGML_USE_SYCL |
|
static bool inline _isinf(float f) { |
|
return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000; |
|
} |
|
#else |
|
static bool inline _isinf(float f) { return std::isinf(f); } |
|
#endif |
|
|
|
|
|
static bool isinf_or_max(float f) { |
|
return _isinf(f) || f == FLT_MAX || f == -FLT_MAX; |
|
} |
|
|
|
static bool ggml_is_view_op(enum ggml_op op) { |
|
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; |
|
} |
|
|
|
enum test_mode { |
|
MODE_TEST, |
|
MODE_PERF, |
|
MODE_GRAD, |
|
}; |
|
|
|
struct test_case { |
|
virtual ~test_case() {} |
|
|
|
virtual std::string op_desc(ggml_tensor * t) { |
|
return ggml_op_desc(t); |
|
} |
|
|
|
virtual std::string vars() { |
|
return ""; |
|
} |
|
|
|
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0; |
|
|
|
virtual double max_nmse_err() { |
|
return 1e-7; |
|
} |
|
|
|
virtual double max_maa_err() { |
|
return 1e-4; |
|
} |
|
|
|
virtual float grad_eps() { |
|
return 1e-1f; |
|
} |
|
|
|
|
|
|
|
virtual bool grad_precise() { |
|
return false; |
|
} |
|
|
|
|
|
virtual int64_t grad_nmax() { |
|
return 10000; |
|
} |
|
|
|
|
|
|
|
|
|
virtual std::vector<float> grad_expect() { |
|
return {}; |
|
} |
|
|
|
virtual void initialize_tensors(ggml_context * ctx) { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { |
|
init_tensor_uniform(t); |
|
} |
|
} |
|
|
|
virtual size_t op_size(ggml_tensor * t) { |
|
size_t size = ggml_nbytes(t); |
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) { |
|
if (t->src[i] != NULL) { |
|
size += ggml_nbytes(t->src[i]); |
|
} |
|
} |
|
return size; |
|
} |
|
|
|
virtual uint64_t op_flops(ggml_tensor * t) { |
|
GGML_UNUSED(t); |
|
return 0; |
|
} |
|
|
|
ggml_cgraph * gf = nullptr; |
|
ggml_cgraph * gb = nullptr; |
|
|
|
static const int sentinel_size = 1024; |
|
|
|
test_mode mode; |
|
|
|
std::vector<ggml_tensor *> sentinels; |
|
|
|
void add_sentinel(ggml_context * ctx) { |
|
if (mode == MODE_PERF || mode == MODE_GRAD) { |
|
return; |
|
} |
|
ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size); |
|
ggml_format_name(sentinel, "sent_%zu", sentinels.size()); |
|
sentinels.push_back(sentinel); |
|
} |
|
|
|
|
|
|
|
ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) { |
|
ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne); |
|
add_sentinel(ctx); |
|
return t; |
|
} |
|
|
|
ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) { |
|
ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0); |
|
add_sentinel(ctx); |
|
return t; |
|
} |
|
|
|
ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) { |
|
ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1); |
|
add_sentinel(ctx); |
|
return t; |
|
} |
|
|
|
ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) { |
|
ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2); |
|
add_sentinel(ctx); |
|
return t; |
|
} |
|
|
|
ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { |
|
ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3); |
|
add_sentinel(ctx); |
|
return t; |
|
} |
|
|
|
bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) { |
|
mode = MODE_TEST; |
|
|
|
ggml_init_params params = { |
|
ggml_tensor_overhead()*128 + ggml_graph_overhead(), |
|
NULL, |
|
true, |
|
}; |
|
ggml_context * ctx = ggml_init(params); |
|
GGML_ASSERT(ctx); |
|
|
|
gf = ggml_new_graph(ctx); |
|
|
|
|
|
add_sentinel(ctx); |
|
|
|
ggml_tensor * out = build_graph(ctx); |
|
|
|
if (op_name != nullptr && op_desc(out) != op_name) { |
|
|
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); |
|
fflush(stdout); |
|
|
|
|
|
bool supported = true; |
|
for (ggml_backend_t backend : {backend1, backend2}) { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (!ggml_backend_supports_op(backend, t)) { |
|
printf("not supported [%s] ", ggml_backend_name(backend)); |
|
supported = false; |
|
break; |
|
} |
|
} |
|
} |
|
if (!supported) { |
|
printf("\n"); |
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
|
|
add_sentinel(ctx); |
|
|
|
|
|
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); |
|
if (buf == NULL) { |
|
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1)); |
|
ggml_free(ctx); |
|
return false; |
|
} |
|
|
|
|
|
ggml_build_forward_expand(gf, out); |
|
|
|
|
|
for (ggml_tensor * sentinel : sentinels) { |
|
ggml_graph_add_node(gf, sentinel); |
|
} |
|
|
|
|
|
initialize_tensors(ctx); |
|
|
|
|
|
struct callback_userdata { |
|
bool ok; |
|
double max_err; |
|
ggml_backend_t backend1; |
|
ggml_backend_t backend2; |
|
}; |
|
|
|
callback_userdata ud { |
|
true, |
|
max_nmse_err(), |
|
backend1, |
|
backend2 |
|
}; |
|
|
|
auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool { |
|
callback_userdata * ud = (callback_userdata *) user_data; |
|
const char * bn1 = ggml_backend_name(ud->backend1); |
|
const char * bn2 = ggml_backend_name(ud->backend2); |
|
|
|
if (t1->op == GGML_OP_NONE) { |
|
|
|
std::vector<uint8_t> t1_data(ggml_nbytes(t1)); |
|
std::vector<uint8_t> t2_data(ggml_nbytes(t2)); |
|
ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1)); |
|
ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2)); |
|
|
|
if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) { |
|
printf("sentinel mismatch: %s ", t1->name); |
|
ud->ok = false; |
|
return true; |
|
} |
|
} |
|
|
|
std::vector<float> f1 = tensor_to_float(t1); |
|
std::vector<float> f2 = tensor_to_float(t2); |
|
|
|
for (size_t i = 0; i < f1.size(); i++) { |
|
|
|
if (std::isnan(f1[i]) || std::isnan(f2[i])) { |
|
printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]); |
|
ud->ok = false; |
|
return true; |
|
} |
|
|
|
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) { |
|
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) { |
|
if (std::signbit(f1[i]) != std::signbit(f2[i])) { |
|
printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]); |
|
ud->ok = false; |
|
return true; |
|
} |
|
} else { |
|
printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]); |
|
ud->ok = false; |
|
return true; |
|
} |
|
} |
|
} |
|
|
|
double err = nmse(f1.data(), f2.data(), f1.size()); |
|
if (err > ud->max_err) { |
|
printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err); |
|
|
|
|
|
|
|
|
|
|
|
ud->ok = false; |
|
} |
|
return true; |
|
|
|
GGML_UNUSED(index); |
|
}; |
|
|
|
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); |
|
|
|
if (!cmp_ok) { |
|
printf("compare failed "); |
|
} |
|
|
|
ggml_backend_buffer_free(buf); |
|
|
|
ggml_free(ctx); |
|
|
|
if (ud.ok && cmp_ok) { |
|
printf("\033[1;32mOK\033[0m\n"); |
|
return true; |
|
} |
|
|
|
printf("\033[1;31mFAIL\033[0m\n"); |
|
return false; |
|
} |
|
|
|
bool eval_perf(ggml_backend_t backend, const char * op_name) { |
|
mode = MODE_PERF; |
|
|
|
static const size_t graph_nodes = 8192; |
|
|
|
ggml_init_params params = { |
|
ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false), |
|
NULL, |
|
true, |
|
}; |
|
ggml_context * ctx = ggml_init(params); |
|
GGML_ASSERT(ctx); |
|
|
|
ggml_tensor * out = build_graph(ctx); |
|
|
|
if (op_name != nullptr && op_desc(out) != op_name) { |
|
|
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); |
|
fflush(stdout); |
|
|
|
|
|
if (!ggml_backend_supports_op(backend, out)) { |
|
printf("not supported\n"); |
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
|
|
int align = 8; |
|
int last = (len + align - 1) / align * align; |
|
if (last - len < 5) { |
|
last += align; |
|
} |
|
printf("%*s", last - len, ""); |
|
|
|
|
|
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); |
|
if (buf == NULL) { |
|
printf("failed to allocate tensors\n"); |
|
ggml_free(ctx); |
|
return false; |
|
} |
|
|
|
|
|
initialize_tensors(ctx); |
|
|
|
|
|
ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false); |
|
ggml_build_forward_expand(gf, out); |
|
|
|
|
|
ggml_backend_graph_compute(backend, gf); |
|
|
|
|
|
int n_runs; |
|
bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU; |
|
if (op_flops(out) > 0) { |
|
|
|
const uint64_t GFLOP = 1000 * 1000 * 1000; |
|
const uint64_t target_flops_cpu = 8ULL * GFLOP; |
|
const uint64_t target_flops_gpu = 100ULL * GFLOP; |
|
uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu; |
|
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1; |
|
} else { |
|
|
|
const size_t GB = 1ULL << 30; |
|
const size_t target_size_cpu = 8 * GB; |
|
const size_t target_size_gpu = 32 * GB; |
|
size_t target_size = is_cpu ? target_size_cpu : target_size_gpu; |
|
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1; |
|
} |
|
|
|
|
|
for (int i = 1; i < n_runs; i++) { |
|
ggml_graph_add_node(gf, out); |
|
} |
|
|
|
|
|
size_t mem = n_runs * op_size(out); |
|
auto tensor_op_size = [](ggml_tensor * t) { |
|
size_t size = ggml_nbytes(t); |
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) { |
|
if (t->src[i] != NULL) { |
|
size += ggml_nbytes(t->src[i]); |
|
} |
|
} |
|
return size; |
|
}; |
|
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) { |
|
if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) { |
|
continue; |
|
} |
|
mem += tensor_op_size(ggml_graph_node(gf, i)); |
|
} |
|
|
|
|
|
int64_t total_time_us = 0; |
|
int64_t total_mem = 0; |
|
int total_runs = 0; |
|
do { |
|
int64_t start_time = ggml_time_us(); |
|
ggml_backend_graph_compute(backend, gf); |
|
int64_t end_time = ggml_time_us(); |
|
|
|
total_time_us += end_time - start_time; |
|
total_mem += mem; |
|
total_runs += n_runs; |
|
} while (total_time_us < 1000*1000); |
|
|
|
printf(" %8d runs - %8.2f us/run - ", |
|
total_runs, |
|
(double)total_time_us / total_runs); |
|
|
|
if (op_flops(out) > 0) { |
|
double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6); |
|
auto format_flops = [](double flops) -> std::string { |
|
char buf[256]; |
|
if (flops >= 1e12) { |
|
snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12); |
|
} else if (flops >= 1e9) { |
|
snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9); |
|
} else if (flops >= 1e6) { |
|
snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6); |
|
} else { |
|
snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3); |
|
} |
|
return buf; |
|
}; |
|
printf("%s/run - \033[1;34m%sS\033[0m", |
|
format_flops(op_flops(out)).c_str(), |
|
format_flops(flops_per_sec).c_str()); |
|
|
|
} else { |
|
printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", |
|
op_size(out) / 1024, |
|
total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0); |
|
} |
|
printf("\n"); |
|
|
|
ggml_backend_buffer_free(buf); |
|
|
|
ggml_free(ctx); |
|
|
|
return true; |
|
} |
|
|
|
bool eval_grad(ggml_backend_t backend, const char * op_name) { |
|
mode = MODE_GRAD; |
|
const std::vector<float> expect = grad_expect(); |
|
|
|
ggml_init_params params = { |
|
ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true), |
|
NULL, |
|
true, |
|
}; |
|
ggml_context * ctx = ggml_init(params); |
|
GGML_ASSERT(ctx); |
|
|
|
gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true); |
|
gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true); |
|
|
|
ggml_tensor * out = build_graph(ctx); |
|
|
|
if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) { |
|
|
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); |
|
fflush(stdout); |
|
|
|
if (out->type != GGML_TYPE_F32) { |
|
ggml_free(ctx); |
|
printf("not supported [%s->type != FP32]\n", out->name); |
|
return true; |
|
} |
|
|
|
|
|
bool supported = true; |
|
bool any_params = false; |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (!ggml_backend_supports_op(backend, t)) { |
|
printf("not supported [%s] ", ggml_backend_name(backend)); |
|
supported = false; |
|
break; |
|
} |
|
if ((t->flags & GGML_TENSOR_FLAG_PARAM)) { |
|
any_params = true; |
|
if (t->type != GGML_TYPE_F32) { |
|
printf("not supported [%s->type != FP32] ", t->name); |
|
supported = false; |
|
break; |
|
} |
|
} |
|
} |
|
if (!any_params) { |
|
printf("not supported [%s] \n", op_name); |
|
supported = false; |
|
} |
|
if (!supported) { |
|
printf("\n"); |
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
int64_t ngrads = 0; |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->flags & GGML_TENSOR_FLAG_PARAM) { |
|
ngrads += ggml_nelements(t); |
|
} |
|
} |
|
if (ngrads > grad_nmax()) { |
|
printf("skipping large tensors for speed \n"); |
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
|
|
if (!ggml_is_scalar(out)) { |
|
out = ggml_sum(ctx, out); |
|
ggml_set_name(out, "sum_of_out"); |
|
} |
|
ggml_set_loss(out); |
|
|
|
ggml_build_forward_expand(gf, out); |
|
ggml_graph_cpy(gf, gb); |
|
ggml_build_backward_expand(ctx, ctx, gb, false); |
|
if (expect.size() != 1 || expect[0] != 0.0f) { |
|
GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf)); |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE); |
|
} |
|
} |
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (!ggml_backend_supports_op(backend, t)) { |
|
printf("not supported [%s] ", ggml_backend_name(backend)); |
|
supported = false; |
|
break; |
|
} |
|
if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) { |
|
printf("not supported [%s->type != FP32] ", t->name); |
|
supported = false; |
|
break; |
|
} |
|
} |
|
if (!supported) { |
|
printf("\n"); |
|
ggml_free(ctx); |
|
return true; |
|
} |
|
|
|
|
|
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); |
|
if (buf == NULL) { |
|
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend)); |
|
ggml_free(ctx); |
|
return false; |
|
} |
|
|
|
|
|
initialize_tensors(ctx); |
|
ggml_graph_reset(gb); |
|
|
|
ggml_backend_graph_compute(backend, gf); |
|
ggml_backend_graph_compute(backend, gb); |
|
|
|
bool ok = true; |
|
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { |
|
if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) { |
|
continue; |
|
} |
|
|
|
const char * bn = ggml_backend_name(backend); |
|
const int64_t ne = ggml_nelements(t); |
|
|
|
std::vector<float> ga; |
|
struct ggml_tensor * grad = ggml_graph_get_grad(gb, t); |
|
if (grad) { |
|
ga = tensor_to_float(grad); |
|
} else { |
|
ga.resize(ne); |
|
} |
|
|
|
for (int64_t i = 0; i < ne; ++i) { |
|
|
|
if (!std::isfinite(ga[i])) { |
|
printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]); |
|
ok = false; |
|
break; |
|
} |
|
} |
|
if (!ok) { |
|
break; |
|
} |
|
|
|
std::vector<float> gn(ne); |
|
GGML_ASSERT(ga.size() == gn.size()); |
|
|
|
std::vector<float> x0 = tensor_to_float(t); |
|
GGML_ASSERT(ggml_is_scalar(out)); |
|
GGML_ASSERT(out->type == GGML_TYPE_F32); |
|
|
|
const float eps = grad_eps(); |
|
for (int64_t i = 0; i < ne; ++i) { |
|
const float xiu = x0[i] + 1.0f*eps; |
|
const float xiuh = x0[i] + 0.5f*eps; |
|
const float xidh = x0[i] - 0.5f*eps; |
|
const float xid = x0[i] - 1.0f*eps; |
|
|
|
float fu, fuh, fdh, fd; |
|
|
|
ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float)); |
|
ggml_backend_graph_compute(backend, gf); |
|
ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out)); |
|
|
|
ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float)); |
|
ggml_backend_graph_compute(backend, gf); |
|
ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out)); |
|
|
|
if (grad_precise()) { |
|
ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float)); |
|
ggml_backend_graph_compute(backend, gf); |
|
ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out)); |
|
|
|
ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float)); |
|
ggml_backend_graph_compute(backend, gf); |
|
ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out)); |
|
|
|
gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps); |
|
} else { |
|
gn[i] = (fu - fd) / (2.0f*eps); |
|
} |
|
|
|
ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t)); |
|
} |
|
|
|
const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect); |
|
if (err > max_maa_err()) { |
|
printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err()); |
|
ok = false; |
|
break; |
|
} |
|
if (!ok) { |
|
break; |
|
} |
|
} |
|
|
|
if (!ok) { |
|
printf("compare failed "); |
|
} |
|
|
|
ggml_backend_buffer_free(buf); |
|
|
|
ggml_free(ctx); |
|
|
|
if (ok) { |
|
printf("\033[1;32mOK\033[0m\n"); |
|
return true; |
|
} |
|
|
|
printf("\033[1;31mFAIL\033[0m\n"); |
|
return false; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct test_example : public test_case { |
|
|
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
|
|
|
|
|
|
|
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
|
|
|
|
|
|
test_example(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(b, "b"); |
|
|
|
|
|
ggml_tensor * out = ggml_add(ctx, a, b); |
|
ggml_set_name(out, "out"); |
|
|
|
|
|
return out; |
|
} |
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
struct test_unary : public test_case { |
|
const ggml_unary_op op; |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
int v; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne_a, v); |
|
} |
|
|
|
test_unary(ggml_unary_op op, |
|
ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {128, 2, 2, 2}, |
|
int v = 0) |
|
: op(op), type(type), ne_a(ne_a), v(v) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG || |
|
op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU; |
|
|
|
ggml_tensor * a; |
|
if (v & 1) { |
|
auto ne = ne_a; ne[0] *= 3; |
|
a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
if (grad_supported) { |
|
ggml_set_param(ctx, a); |
|
} |
|
ggml_set_name(a, "a"); |
|
|
|
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); |
|
ggml_set_name(a, "view_of_a"); |
|
} else { |
|
a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
if (grad_supported) { |
|
ggml_set_param(ctx, a); |
|
} |
|
ggml_set_name(a, "a"); |
|
} |
|
|
|
ggml_tensor * out = ggml_unary(ctx, a, op); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
|
|
init_tensor_uniform(t, -150.f, 150.f); |
|
} |
|
} |
|
|
|
float grad_eps() override { |
|
return 15.0f; |
|
} |
|
|
|
std::vector<float> grad_expect() override { |
|
if (op == GGML_UNARY_OP_ABS) { |
|
return {-1.0f, 1.0f}; |
|
} |
|
if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) { |
|
return {0.0f}; |
|
} |
|
if (op == GGML_UNARY_OP_RELU) { |
|
return {0.0f, 1.0f}; |
|
} |
|
return {}; |
|
} |
|
|
|
}; |
|
|
|
|
|
struct test_get_rows : public test_case { |
|
const ggml_type type; |
|
const int n; |
|
const int m; |
|
const int r; |
|
const int b; |
|
const bool v; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR6(type, n, m, r, b, v); |
|
} |
|
|
|
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false) |
|
: type(type), n(n), m(m), r(r), b(b), v(v) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b); |
|
ggml_set_name(in, "in"); |
|
|
|
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b); |
|
ggml_set_name(rows, "rows"); |
|
if (v) { |
|
rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0); |
|
ggml_set_name(rows, "view_of_rows"); |
|
} |
|
|
|
const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows); |
|
if (grad_supported) { |
|
ggml_set_param(ctx, in); |
|
|
|
} |
|
|
|
ggml_tensor * out = ggml_get_rows(ctx, in, rows); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->type == GGML_TYPE_I32) { |
|
if (ggml_is_view_op(t->op)) { continue; } |
|
|
|
std::vector<int> data(r*b); |
|
for (int i = 0; i < r*b; i++) { |
|
data[i] = rand() % m; |
|
} |
|
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int)); |
|
} else { |
|
init_tensor_uniform(t); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
struct test_argmax : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_argmax(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 100, 1, 1}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_argmax(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
std::random_device rd; |
|
std::default_random_engine rng(rd()); |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->type == GGML_TYPE_F32) { |
|
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) { |
|
std::vector<float> data(t->ne[0]); |
|
for (int i = 0; i < t->ne[0]; i++) { |
|
data[i] = i; |
|
} |
|
std::shuffle(data.begin(), data.end(), rng); |
|
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float)); |
|
} |
|
} else { |
|
init_tensor_uniform(t); |
|
} |
|
} |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 0.0; |
|
} |
|
}; |
|
|
|
|
|
struct test_count_equal : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_count_equal(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {4, 500, 1, 1}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * a_argmax = ggml_argmax(ctx, a); |
|
ggml_set_name(a_argmax, "a_argmax"); |
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(b, "b"); |
|
|
|
ggml_tensor * b_argmax = ggml_argmax(ctx, a); |
|
ggml_set_name(b_argmax, "b_argmax"); |
|
|
|
ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 0.0; |
|
} |
|
}; |
|
|
|
|
|
struct test_repeat : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const std::array<int, 4> nr; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, nr); |
|
} |
|
|
|
size_t op_size(ggml_tensor * t) override { |
|
return ggml_nbytes(t) * 2; |
|
} |
|
|
|
test_repeat(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
|
std::array<int, 4> nr = {2, 2, 2, 2}) |
|
: type(type), ne(ne), nr(nr) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); |
|
ggml_set_name(target, "target"); |
|
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, src); |
|
ggml_set_name(src, "src"); |
|
|
|
ggml_tensor * out = ggml_repeat(ctx, src, target); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_dup : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const std::array<int64_t, 4> permute; |
|
bool _use_permute; |
|
|
|
std::string vars() override { |
|
std::string v = VARS_TO_STR2(type, ne); |
|
if (_use_permute) v += "," + VAR_TO_STR(permute); |
|
return v; |
|
} |
|
|
|
test_dup(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 10, 20, 1}, |
|
std::array<int64_t, 4> permute = {0, 0, 0, 0}) |
|
: type(type), ne(ne), permute(permute), |
|
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, src); |
|
ggml_set_name(src, "src"); |
|
|
|
if (_use_permute) { |
|
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]); |
|
ggml_set_name(src, "src_permuted"); |
|
} |
|
|
|
ggml_tensor * out = ggml_dup(ctx, src); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_set : public test_case { |
|
const ggml_type type_src; |
|
const ggml_type type_dst; |
|
const std::array<int64_t, 4> ne; |
|
const int dim; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR4(type_src, type_dst, ne, dim); |
|
} |
|
|
|
size_t op_size(ggml_tensor * t) override { |
|
return ggml_nbytes(t) + ggml_nbytes(t->src[0]); |
|
} |
|
|
|
test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1) |
|
: type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data()); |
|
ggml_set_param(ctx, src); |
|
ggml_set_name(src, "src"); |
|
|
|
auto ne_dst = ne; |
|
for (int i = 0; i < dim; ++i) { |
|
ne_dst[i] *= 2; |
|
} |
|
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data()); |
|
ggml_set_param(ctx, dst); |
|
ggml_set_name(dst, "dst"); |
|
|
|
size_t offset = 0; |
|
for (int i = 0; i < dim; ++i) { |
|
offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i]; |
|
} |
|
ggml_tensor * out = ggml_set(ctx, dst, src, |
|
|
|
src->nb[1], src->nb[2], src->nb[3], offset); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_cpy : public test_case { |
|
const ggml_type type_src; |
|
const ggml_type type_dst; |
|
const std::array<int64_t, 4> ne; |
|
const std::array<int64_t, 4> permute; |
|
bool _src_use_permute; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR4(type_src, type_dst, ne, permute); |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 1e-6; |
|
} |
|
|
|
size_t op_size(ggml_tensor * t) override { |
|
return ggml_nbytes(t) + ggml_nbytes(t->src[0]); |
|
} |
|
|
|
test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 10, 10, 1}, |
|
std::array<int64_t, 4> permute = {0, 0, 0, 0}) |
|
: type_src(type_src), type_dst(type_dst), ne(ne), permute(permute), |
|
_src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data()); |
|
ggml_set_param(ctx, src); |
|
ggml_set_name(src, "src"); |
|
|
|
if (_src_use_permute) { |
|
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]); |
|
ggml_set_name(src, "src_permuted"); |
|
} |
|
|
|
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne); |
|
ggml_set_name(dst, "dst"); |
|
|
|
ggml_tensor * out = ggml_cpy(ctx, src, dst); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_cont : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_cont(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 10, 10, 1}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, src); |
|
ggml_set_name(src, "src"); |
|
|
|
src = ggml_transpose(ctx, src); |
|
ggml_set_name(src, "src_transposed"); |
|
|
|
ggml_tensor * out = ggml_cont(ctx, src); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
struct test_bin_bcast : public test_case { |
|
using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *); |
|
op_t op; |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const std::array<int, 4> nr; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, nr); |
|
} |
|
|
|
size_t op_size(ggml_tensor * t) override { |
|
return ggml_nbytes(t) * 3; |
|
} |
|
|
|
test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 10, 1, 1}, |
|
std::array<int, 4> nr = {1, 2, 1, 1}) |
|
: op(op), type(type), ne(ne), nr(nr) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(b, "b"); |
|
|
|
|
|
const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b); |
|
if (grad_supported) { |
|
ggml_set_param(ctx, a); |
|
ggml_set_param(ctx, b); |
|
} |
|
|
|
ggml_tensor * out = op(ctx, a, b); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (op == ggml_mul || op == ggml_div) { |
|
|
|
init_tensor_uniform(t, 0.9f, 1.1f); |
|
} else { |
|
init_tensor_uniform(t); |
|
} |
|
} |
|
} |
|
|
|
float grad_eps() override { |
|
return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1); |
|
} |
|
|
|
bool grad_precise() override { |
|
return op == ggml_div; |
|
} |
|
|
|
double max_maa_err() override { |
|
return op == ggml_add ? 1e-4 : 1e-3; |
|
} |
|
}; |
|
|
|
|
|
struct test_add1 : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_add1(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1); |
|
|
|
ggml_set_name(b, "b"); |
|
|
|
ggml_tensor * out = ggml_add1(ctx, a, b); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
float grad_eps() override { |
|
return 0.1f * ne[0]*ne[1]*ne[2]*ne[3]; |
|
} |
|
}; |
|
|
|
|
|
struct test_scale : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
float scale; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, scale); |
|
} |
|
|
|
test_scale(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 10, 10, 10}, |
|
float scale = 2.0f) |
|
: type(type), ne(ne), scale(scale) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_scale(ctx, a, scale); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_norm : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
float eps; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, eps); |
|
} |
|
|
|
test_norm(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {64, 5, 4, 3}, |
|
float eps = 1e-6f) |
|
: type(type), ne(ne), eps(eps) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_norm(ctx, a, eps); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_rms_norm : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
float eps; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, eps); |
|
} |
|
|
|
test_rms_norm(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {64, 5, 4, 3}, |
|
float eps = 1e-6f) |
|
: type(type), ne(ne), eps(eps) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_rms_norm(ctx, a, eps); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_ssm_conv : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
const std::array<int64_t, 4> ne_b; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne_a, ne_b); |
|
} |
|
|
|
test_ssm_conv(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {10, 10, 10, 1}, |
|
std::array<int64_t, 4> ne_b = {3, 3, 1, 1}) |
|
: type(type), ne_a(ne_a), ne_b(ne_b) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data()); |
|
ggml_tensor * out = ggml_ssm_conv(ctx, a, b); |
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_ssm_scan : public test_case { |
|
const ggml_type type; |
|
|
|
const int64_t d_state; |
|
const int64_t d_inner; |
|
const int64_t n_seq_tokens; |
|
const int64_t n_seqs; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs); |
|
} |
|
|
|
test_ssm_scan(ggml_type type = GGML_TYPE_F32, |
|
int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) |
|
: type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data()); |
|
ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data()); |
|
ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data()); |
|
ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data()); |
|
ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data()); |
|
ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data()); |
|
ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C); |
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_rwkv_wkv6 : public test_case { |
|
const ggml_type type; |
|
|
|
const int64_t head_count; |
|
const int64_t head_size; |
|
const int64_t n_seq_tokens; |
|
const int64_t n_seqs; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); |
|
} |
|
|
|
test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32, |
|
int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) |
|
: type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
const int64_t n_tokens = n_seq_tokens * n_seqs; |
|
ggml_tensor * r = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data()); |
|
ggml_tensor * k = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ head_size, 1, head_count, n_tokens }.data()); |
|
ggml_tensor * v = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data()); |
|
ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data()); |
|
ggml_tensor * td = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data()); |
|
ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data()); |
|
ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s); |
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_mul_mat : public test_case { |
|
const ggml_type type_a; |
|
const ggml_type type_b; |
|
const int64_t m; |
|
const int64_t n; |
|
const int64_t k; |
|
const std::array<int64_t, 2> bs; |
|
const std::array<int64_t, 2> nr; |
|
const std::array<int64_t, 4> per; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per); |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 5e-4; |
|
} |
|
|
|
uint64_t op_flops(ggml_tensor * t) override { |
|
GGML_UNUSED(t); |
|
return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1]; |
|
} |
|
|
|
test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, |
|
int64_t m = 32, int64_t n = 32, int64_t k = 32, |
|
std::array<int64_t, 2> bs = {10, 10}, |
|
std::array<int64_t, 2> nr = {2, 2}, |
|
std::array<int64_t, 4> per = {0, 1, 2, 3}) |
|
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
|
|
ggml_tensor * a; |
|
ggml_tensor * b; |
|
|
|
const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3); |
|
if (npermuted > 0) { |
|
GGML_ASSERT(npermuted == 2); |
|
GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0); |
|
GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0); |
|
|
|
|
|
const int64_t ne_a[4] = {k, m, bs[0], bs[1]}; |
|
const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]}; |
|
|
|
a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]); |
|
b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]); |
|
ggml_set_param(ctx, a); |
|
ggml_set_param(ctx, b); |
|
ggml_set_name(a, "a"); |
|
ggml_set_name(b, "b"); |
|
|
|
a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]); |
|
b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]); |
|
ggml_set_name(a, "a_permuted"); |
|
ggml_set_name(b, "b_permuted"); |
|
} else { |
|
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]); |
|
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]); |
|
ggml_set_param(ctx, a); |
|
ggml_set_param(ctx, b); |
|
ggml_set_name(a, "a"); |
|
ggml_set_name(b, "b"); |
|
} |
|
|
|
ggml_tensor * out = ggml_mul_mat(ctx, a, b); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_mul_mat_id : public test_case { |
|
const ggml_type type_a; |
|
const ggml_type type_b; |
|
const int n_mats; |
|
const int n_used; |
|
const bool b; |
|
const int64_t m; |
|
const int64_t n; |
|
const int64_t k; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k); |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 5e-4; |
|
} |
|
|
|
uint64_t op_flops(ggml_tensor * t) override { |
|
GGML_UNUSED(t); |
|
return 2 * m * k * n * n_used; |
|
} |
|
|
|
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, |
|
int n_mats = 8, int n_used = 2, bool b = false, |
|
int64_t m = 32, int64_t n = 32, int64_t k = 32) |
|
: type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b), |
|
m(m), n(n), k(k) { |
|
GGML_ASSERT(n_used <= n_mats); |
|
} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
|
|
ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats); |
|
ggml_set_name(as, "as"); |
|
|
|
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n); |
|
ggml_set_name(ids, "ids"); |
|
if (n_used != n_mats) { |
|
ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0); |
|
ggml_set_name(ids, "view_of_ids"); |
|
} |
|
|
|
ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n); |
|
ggml_set_name(b, "b"); |
|
|
|
ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
std::random_device rd; |
|
std::default_random_engine rng(rd()); |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->type == GGML_TYPE_I32) { |
|
if (ggml_is_view_op(t->op)) { continue; } |
|
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) { |
|
std::vector<int32_t> data(t->ne[0]); |
|
for (int i = 0; i < t->ne[0]; i++) { |
|
data[i] = i % n_mats; |
|
} |
|
std::shuffle(data.begin(), data.end(), rng); |
|
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t)); |
|
} |
|
} else { |
|
init_tensor_uniform(t); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
struct test_out_prod : public test_case { |
|
const ggml_type type_a; |
|
const ggml_type type_b; |
|
const int64_t m; |
|
const int64_t n; |
|
const int64_t k; |
|
const std::array<int64_t, 2> bs; |
|
const bool trans_b; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR7(type_a, type_b, m, n, k, bs, trans_b); |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 5e-4; |
|
} |
|
|
|
test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, |
|
int64_t m = 32, int64_t n = 32, int64_t k = 32, |
|
std::array<int64_t, 2> bs = {10, 10}, |
|
bool trans_b = false) |
|
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), trans_b(trans_b) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * b; |
|
if (trans_b) { |
|
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0], bs[1]); |
|
b = ggml_transpose(ctx, b); |
|
} else { |
|
b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0], bs[1]); |
|
} |
|
ggml_set_name(b, "b"); |
|
|
|
ggml_tensor * out = ggml_out_prod(ctx, a, b); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_sqr : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_sqr(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_sqr(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
float grad_eps() override { |
|
return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; |
|
} |
|
}; |
|
|
|
|
|
struct test_sqrt : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_sqrt(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 3, 3, 2}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_sqrt(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
init_tensor_uniform(t, 50.0f, 100.0f); |
|
} |
|
} |
|
|
|
float grad_eps() override { |
|
return 20.0f; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_log : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_log(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_log(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
|
|
init_tensor_uniform(t, 0.9f, 1.1f); |
|
} |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_sin : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_sin(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_sin(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
init_tensor_uniform(t, -6.5f, 6.5f); |
|
} |
|
} |
|
|
|
double max_maa_err() override { |
|
return 1e-3; |
|
} |
|
|
|
float grad_eps() override { |
|
return 0.2f; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_cos : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_cos(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_cos(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
init_tensor_uniform(t, -6.5f, 6.5f); |
|
} |
|
} |
|
|
|
double max_maa_err() override { |
|
return 1e-3; |
|
} |
|
|
|
float grad_eps() override { |
|
return 0.2f; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_clamp : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
float min; |
|
float max; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR4(type, ne, min, max); |
|
} |
|
|
|
test_clamp(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
|
float min = -0.5f, float max = 0.5f) |
|
: type(type), ne(ne), min(min), max(max) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_clamp(ctx, a, min, max); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
float grad_eps() override { |
|
return 1e-2f; |
|
} |
|
|
|
std::vector<float> grad_expect() override { |
|
return {0.0f, 1.0f}; |
|
} |
|
}; |
|
|
|
|
|
struct test_diag_mask_inf : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const int n_past; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, n_past); |
|
} |
|
|
|
test_diag_mask_inf(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 10, 3, 2}, |
|
int n_past = 5) |
|
: type(type), ne(ne), n_past(n_past) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_soft_max : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const bool mask; |
|
const float scale; |
|
const float max_bias; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR5(type, ne, mask, scale, max_bias); |
|
} |
|
|
|
|
|
|
|
virtual double max_nmse_err() override { |
|
return 1e-6; |
|
} |
|
|
|
test_soft_max(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
|
bool mask = false, |
|
float scale = 1.0f, |
|
float max_bias = 0.0f) |
|
: type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * mask = nullptr; |
|
if (this->mask) { |
|
mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]); |
|
ggml_set_name(mask, "mask"); |
|
} |
|
|
|
ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
|
|
struct test_rope : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
int n_dims; |
|
int mode; |
|
int n_ctx; |
|
float fs; |
|
float ef; |
|
float af; |
|
bool ff; |
|
int v; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v); |
|
} |
|
|
|
test_rope(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {10, 5, 3, 1}, |
|
int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0) |
|
: type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a; |
|
if (v & 1) { |
|
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; |
|
a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); |
|
ggml_set_name(a, "view_of_a"); |
|
} else { |
|
a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
} |
|
|
|
ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]); |
|
ggml_set_name(pos, "pos"); |
|
|
|
ggml_tensor * freq = nullptr; |
|
if (ff) { |
|
freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2); |
|
ggml_set_name(freq, "freq"); |
|
} |
|
|
|
ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->type == GGML_TYPE_I32) { |
|
|
|
std::vector<int> data(ne_a[2]); |
|
for (int i = 0; i < ne_a[2]; i++) { |
|
data[i] = rand() % n_ctx; |
|
} |
|
ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int)); |
|
} else { |
|
if (t->ne[0] == n_dims/2) { |
|
|
|
init_tensor_uniform(t, 0.9f, 1.1f); |
|
} else { |
|
init_tensor_uniform(t); |
|
} |
|
} |
|
} |
|
} |
|
|
|
double max_maa_err() override { |
|
return 1e-3; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_pool2d : public test_case { |
|
enum ggml_op_pool pool_type; |
|
const ggml_type type_input; |
|
const std::array<int64_t, 4> ne_input; |
|
|
|
const int k0; |
|
const int k1; |
|
|
|
const int s0; |
|
const int s1; |
|
|
|
const int p0; |
|
const int p1; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1); |
|
} |
|
|
|
test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG, |
|
ggml_type type_input = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, |
|
int k0 = 3, int k1 = 3, |
|
int s0 = 1, int s1 = 1, |
|
int p0 = 1, int p1 = 1) |
|
: pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); |
|
ggml_set_param(ctx, input); |
|
ggml_set_name(input, "input"); |
|
|
|
ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_conv_transpose_1d : public test_case { |
|
const std::array<int64_t, 4> ne_input; |
|
const std::array<int64_t, 4> ne_kernel; |
|
|
|
const int s0; |
|
const int p0; |
|
const int d0; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0); |
|
} |
|
|
|
test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, |
|
std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, |
|
int s0 = 1, int p0 = 0, int d0 = 1) |
|
: ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data()); |
|
ggml_set_name(input, "input"); |
|
|
|
ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data()); |
|
ggml_set_name(kernel, "kernel"); |
|
|
|
ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_im2col : public test_case { |
|
const ggml_type type_input; |
|
const ggml_type type_kernel; |
|
const ggml_type dst_type; |
|
const std::array<int64_t, 4> ne_input; |
|
const std::array<int64_t, 4> ne_kernel; |
|
|
|
const int s0; |
|
const int s1; |
|
|
|
const int p0; |
|
const int p1; |
|
|
|
const int d0; |
|
const int d1; |
|
|
|
const bool is_2D; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D); |
|
} |
|
|
|
test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, |
|
std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, |
|
int s0 = 1, int s1 = 1, |
|
int p0 = 1, int p1 = 1, |
|
int d0 = 1, int d1 = 1, |
|
bool is_2D = true) |
|
: type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); |
|
ggml_set_param(ctx, input); |
|
ggml_set_name(input, "input"); |
|
|
|
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data()); |
|
ggml_set_name(kernel, "kernel"); |
|
|
|
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_concat : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
const int64_t ne_b_d; |
|
const int dim; |
|
const int v; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v); |
|
} |
|
|
|
test_concat(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {10, 5, 5, 5}, |
|
int64_t ne_b_d = 5, |
|
int dim = 2, int v = 0) |
|
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
auto ne_b = ne_a; |
|
ne_b[dim] = ne_b_d; |
|
ggml_tensor * a; |
|
if (v & 1) { |
|
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; |
|
a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); |
|
ggml_set_name(a, "view_of_a"); |
|
} else { |
|
a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
ggml_set_name(a, "a"); |
|
} |
|
ggml_tensor * b; |
|
if (v & 2) { |
|
auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4; |
|
b = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(b, "b"); |
|
|
|
b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0); |
|
ggml_set_name(b, "view_of_b"); |
|
} else { |
|
b = ggml_new_tensor(ctx, type, 4, ne_b.data()); |
|
ggml_set_name(b, "b"); |
|
} |
|
|
|
ggml_tensor * out = ggml_concat(ctx, a, b, dim); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_argsort : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
ggml_sort_order order; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, order); |
|
} |
|
|
|
test_argsort(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {16, 10, 10, 10}, |
|
ggml_sort_order order = GGML_SORT_ORDER_ASC) |
|
: type(type), ne(ne), order(order) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_argsort(ctx, a, order); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
std::random_device rd; |
|
std::default_random_engine rng(rd()); |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->type == GGML_TYPE_I32) { |
|
|
|
std::vector<int> data(ggml_nelements(t)); |
|
for (int i = 0; i < ggml_nelements(t); i++) { |
|
data[i] = rand(); |
|
} |
|
std::shuffle(data.begin(), data.end(), rng); |
|
ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int)); |
|
} else if (t->type == GGML_TYPE_F32) { |
|
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) { |
|
std::vector<float> data(t->ne[0]); |
|
for (int i = 0; i < t->ne[0]; i++) { |
|
data[i] = i; |
|
} |
|
std::shuffle(data.begin(), data.end(), rng); |
|
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float)); |
|
} |
|
} else { |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
struct test_sum : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_sum(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_sum(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
float grad_eps() override { |
|
return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]); |
|
} |
|
}; |
|
|
|
|
|
struct test_sum_rows : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_sum_rows(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_sum_rows(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_mean : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_mean(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_mean(ctx, a); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
float grad_eps() override { |
|
return 0.1f * ne[0]*ne[1]*ne[2]*ne[3]; |
|
} |
|
}; |
|
|
|
|
|
struct test_upscale : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const int32_t scale_factor; |
|
const bool transpose; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR4(type, ne, scale_factor, transpose); |
|
} |
|
|
|
test_upscale(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {512, 512, 3, 1}, |
|
int32_t scale_factor = 2, bool transpose = false) |
|
: type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
if (transpose) { |
|
a = ggml_transpose(ctx, a); |
|
ggml_set_name(a, "a_transposed"); |
|
} |
|
|
|
ggml_tensor * out = ggml_upscale(ctx, a, scale_factor); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_upscale_ext : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const std::array<int64_t, 4> ne_tgt; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, ne_tgt); |
|
} |
|
|
|
test_upscale_ext(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {2, 5, 7, 11}, |
|
std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13}) |
|
: type(type), ne(ne), ne_tgt(ne_tgt) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_group_norm : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
const int32_t num_groups; |
|
const float eps; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne, num_groups); |
|
} |
|
|
|
test_group_norm(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {64, 64, 320, 1}, |
|
int32_t num_groups = 32, |
|
float eps = 1e-6f) |
|
: type(type), ne(ne), num_groups(num_groups), eps(eps) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_acc : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
const std::array<int64_t, 4> ne_b; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne_a, ne_b); |
|
} |
|
|
|
test_acc(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {256, 17, 1, 1}, |
|
std::array<int64_t, 4> ne_b = {256, 16, 1, 1}) |
|
: type(type), ne_a(ne_a), ne_b(ne_b) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data()); |
|
ggml_set_param(ctx, b); |
|
ggml_set_name(b, "b"); |
|
|
|
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_pad : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
const int pad_0; |
|
const int pad_1; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR4(type, ne_a, pad_0, pad_1); |
|
} |
|
|
|
test_pad(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {512, 512, 1, 1}, |
|
int pad_0 = 1, int pad_1 = 1) |
|
: type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_arange : public test_case { |
|
const ggml_type type; |
|
const float start; |
|
const float stop; |
|
const float step; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR4(type, start, stop, step); |
|
} |
|
|
|
test_arange(ggml_type type = GGML_TYPE_F32, |
|
float start = 0.f, float stop = 10.f, float step = 1.f) |
|
: type(type), start(start), stop(stop), step(step) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * out = ggml_arange(ctx, start, stop, step); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_timestep_embedding : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
const int dim; |
|
const int max_period; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR4(type, ne_a, dim, max_period); |
|
} |
|
|
|
test_timestep_embedding(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {2, 1, 1, 1}, |
|
int dim = 320, int max_period=10000) |
|
: type(type), ne_a(ne_a), dim(dim), max_period(max_period) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_leaky_relu : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne_a; |
|
const float negative_slope; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR3(type, ne_a, negative_slope); |
|
} |
|
|
|
test_leaky_relu(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne_a = {10, 5, 4, 3}, |
|
float negative_slope = 0.1f) |
|
: type(type), ne_a(ne_a), negative_slope(negative_slope) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
|
|
struct test_flash_attn_ext : public test_case { |
|
const int64_t hs; |
|
const int64_t nh; |
|
const int64_t kv; |
|
const int64_t nb; |
|
|
|
const bool mask; |
|
|
|
const float max_bias; |
|
const float logit_softcap; |
|
|
|
const ggml_type type_KV; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV); |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 5e-4; |
|
} |
|
|
|
uint64_t op_flops(ggml_tensor * t) override { |
|
GGML_UNUSED(t); |
|
|
|
|
|
return 2 * 2 * nh * nb * hs * kv; |
|
} |
|
|
|
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, |
|
bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16) |
|
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV)); |
|
|
|
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1); |
|
ggml_set_name(q, "q"); |
|
|
|
ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); |
|
ggml_set_name(k, "k"); |
|
|
|
ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); |
|
ggml_set_name(v, "v"); |
|
|
|
ggml_tensor * m = nullptr; |
|
if (mask) { |
|
m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1); |
|
ggml_set_name(m, "m"); |
|
} |
|
|
|
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_cross_entropy_loss : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
ggml_set_param(ctx, logits); |
|
ggml_set_name(logits, "logits"); |
|
|
|
ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data()); |
|
|
|
ggml_set_name(labels, "labels"); |
|
|
|
|
|
labels = ggml_soft_max(ctx, labels); |
|
ggml_set_name(labels, "labels_normalized"); |
|
|
|
ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
init_tensor_uniform(t, -100.0f, 100.0f); |
|
} |
|
} |
|
|
|
float grad_eps() override { |
|
return 1.0f; |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
|
|
struct test_opt_step_adamw : public test_case { |
|
const ggml_type type; |
|
const std::array<int64_t, 4> ne; |
|
|
|
std::string vars() override { |
|
return VARS_TO_STR2(type, ne); |
|
} |
|
|
|
test_opt_step_adamw(ggml_type type = GGML_TYPE_F32, |
|
std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
|
: type(type), ne(ne) {} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]); |
|
ggml_set_param(ctx, a); |
|
ggml_set_name(a, "a"); |
|
|
|
ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]); |
|
ggml_set_name(grad, "grad"); |
|
|
|
ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]); |
|
ggml_set_name(grad_m, "grad_m"); |
|
|
|
ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]); |
|
ggml_set_name(grad_v, "grad_v"); |
|
|
|
ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7); |
|
ggml_set_name(adamw_params, "adamw_params"); |
|
|
|
ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params); |
|
ggml_set_name(out, "out"); |
|
|
|
return out; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
init_tensor_uniform(t, 0.0f, 1.0f); |
|
} |
|
} |
|
|
|
bool grad_precise() override { |
|
return true; |
|
} |
|
}; |
|
|
|
enum llm_norm_type { |
|
LLM_NORM, |
|
LLM_NORM_RMS, |
|
}; |
|
|
|
struct llama_hparams { |
|
uint32_t n_vocab; |
|
uint32_t n_embd; |
|
uint32_t n_head; |
|
uint32_t n_head_kv; |
|
static constexpr uint32_t n_layer = 1; |
|
uint32_t n_rot; |
|
uint32_t n_embd_head; |
|
uint32_t n_ff; |
|
|
|
float f_norm_eps; |
|
float f_norm_rms_eps; |
|
|
|
|
|
static constexpr uint32_t n_ctx = 512; |
|
static constexpr uint32_t n_ctx_orig = n_ctx; |
|
|
|
|
|
int32_t n_tokens; |
|
|
|
|
|
static constexpr int32_t n_kv = 32; |
|
static constexpr int32_t kv_head = 1; |
|
|
|
uint32_t n_embd_gqa() const { |
|
return n_embd_head * n_head_kv; |
|
} |
|
}; |
|
|
|
|
|
struct test_llm : public test_case { |
|
llama_hparams hp; |
|
|
|
protected: |
|
test_llm(llama_hparams hp) |
|
: hp(std::move(hp)) { |
|
} |
|
|
|
public: |
|
struct ggml_tensor * llm_build_norm( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * cur, |
|
struct ggml_tensor * mw, |
|
struct ggml_tensor * mb, |
|
llm_norm_type type) { |
|
switch (type) { |
|
case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break; |
|
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break; |
|
} |
|
cur = ggml_mul(ctx, cur, mw); |
|
if (mb) { |
|
cur = ggml_add(ctx, cur, mb); |
|
} |
|
return cur; |
|
} |
|
|
|
void llm_build_kv_store( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * k_l, |
|
struct ggml_tensor * v_l, |
|
struct ggml_tensor * k_cur, |
|
struct ggml_tensor * v_cur) { |
|
|
|
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens)); |
|
|
|
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(), |
|
(ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head); |
|
|
|
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(), |
|
( hp.n_ctx)*ggml_element_size(v_l), |
|
(hp.kv_head)*ggml_element_size(v_l)); |
|
|
|
|
|
ggml_cpy(ctx, k_cur, k_cache_view); |
|
ggml_cpy(ctx, v_cur_t, v_cache_view); |
|
} |
|
|
|
struct ggml_tensor * llm_build_kqv( |
|
struct ggml_context * ctx, |
|
struct ggml_tensor * k_l, |
|
struct ggml_tensor * v_l, |
|
struct ggml_tensor * q_cur, |
|
struct ggml_tensor * kq_mask, |
|
float kq_scale) { |
|
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); |
|
|
|
struct ggml_tensor * k = |
|
ggml_view_3d(ctx, k_l, |
|
hp.n_embd_head, hp.n_kv, hp.n_head_kv, |
|
ggml_row_size(k_l->type, hp.n_embd_gqa()), |
|
ggml_row_size(k_l->type, hp.n_embd_head), |
|
0); |
|
|
|
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); |
|
|
|
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f); |
|
|
|
|
|
struct ggml_tensor * v = |
|
ggml_view_3d(ctx, v_l, |
|
hp.n_kv, hp.n_embd_head, hp.n_head_kv, |
|
ggml_element_size(v_l)*hp.n_ctx, |
|
ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head, |
|
0); |
|
|
|
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); |
|
|
|
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); |
|
|
|
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens); |
|
|
|
struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); |
|
cur = ggml_mul_mat(ctx, wo, cur); |
|
|
|
return cur; |
|
} |
|
|
|
void initialize_tensors(ggml_context * ctx) override { |
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->type == GGML_TYPE_I32) { |
|
|
|
std::vector<int> data(hp.n_tokens); |
|
for (int i = 0; i < hp.n_tokens; i++) { |
|
data[i] = rand() % hp.n_ctx; |
|
} |
|
ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int)); |
|
} else { |
|
init_tensor_uniform(t); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
struct test_llama : public test_llm { |
|
static constexpr float freq_base = 10000.0f; |
|
static constexpr float freq_scale = 1.0f; |
|
static constexpr float ext_factor = 0.0f; |
|
static constexpr float attn_factor = 1.0f; |
|
static constexpr float beta_fast = 32.0f; |
|
static constexpr float beta_slow = 1.0f; |
|
|
|
std::string op_desc(ggml_tensor * t) override { |
|
GGML_UNUSED(t); |
|
return "LLAMA"; |
|
} |
|
|
|
std::string vars() override { |
|
auto n_tokens = hp.n_tokens; |
|
return VARS_TO_STR1(n_tokens); |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 2e-3; |
|
} |
|
|
|
test_llama(int n_tokens = 1) |
|
: test_llm({ |
|
32000, |
|
3200, |
|
32, |
|
32, |
|
100, |
|
100, |
|
8640, |
|
0.f, |
|
1e-5f, |
|
n_tokens, |
|
}) { |
|
} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
struct ggml_tensor * cur; |
|
struct ggml_tensor * inpL; |
|
|
|
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); |
|
|
|
|
|
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); |
|
|
|
|
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1); |
|
|
|
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); |
|
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); |
|
|
|
for (uint32_t il = 0; il < hp.n_layer; ++il) { |
|
struct ggml_tensor * inpSA = inpL; |
|
|
|
|
|
ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); |
|
cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS); |
|
|
|
|
|
{ |
|
ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); |
|
ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); |
|
ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); |
|
|
|
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur); |
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur); |
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur); |
|
|
|
Qcur = ggml_rope_ext( |
|
ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr, |
|
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale, |
|
ext_factor, attn_factor, beta_fast, beta_slow |
|
); |
|
|
|
Kcur = ggml_rope_ext( |
|
ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr, |
|
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale, |
|
ext_factor, attn_factor, beta_fast, beta_slow |
|
); |
|
|
|
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); |
|
|
|
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); |
|
} |
|
|
|
struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA); |
|
|
|
|
|
ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); |
|
cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS); |
|
|
|
ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); |
|
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); |
|
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); |
|
struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur); |
|
cur = ggml_mul_mat(ctx, ffn_gate, cur); |
|
cur = ggml_silu(ctx, cur); |
|
cur = ggml_mul(ctx, cur, tmp); |
|
cur = ggml_mul_mat(ctx, ffn_down, cur); |
|
|
|
cur = ggml_add(ctx, cur, ffn_inp); |
|
|
|
|
|
inpL = cur; |
|
} |
|
|
|
cur = inpL; |
|
|
|
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); |
|
cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS); |
|
|
|
|
|
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab); |
|
cur = ggml_mul_mat(ctx, output, cur); |
|
|
|
return cur; |
|
} |
|
}; |
|
|
|
|
|
struct test_falcon : public test_llm { |
|
static constexpr float freq_base = 10000.0f; |
|
static constexpr float freq_scale = 1.0f; |
|
static constexpr float ext_factor = 0.0f; |
|
static constexpr float attn_factor = 1.0f; |
|
static constexpr float beta_fast = 32.0f; |
|
static constexpr float beta_slow = 1.0f; |
|
|
|
std::string op_desc(ggml_tensor * t) override { |
|
GGML_UNUSED(t); |
|
return "FALCON"; |
|
} |
|
|
|
std::string vars() override { |
|
auto n_tokens = hp.n_tokens; |
|
return VARS_TO_STR1(n_tokens); |
|
} |
|
|
|
double max_nmse_err() override { |
|
return 2e-3; |
|
} |
|
|
|
test_falcon(int n_tokens = 1) |
|
: test_llm({ |
|
32000, |
|
3200, |
|
50, |
|
1, |
|
64, |
|
64, |
|
8640, |
|
1e-5f, |
|
0.f, |
|
n_tokens, |
|
}) { |
|
} |
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override { |
|
struct ggml_tensor * cur; |
|
struct ggml_tensor * inpL; |
|
|
|
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); |
|
|
|
|
|
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); |
|
|
|
|
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1); |
|
|
|
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); |
|
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); |
|
|
|
for (uint32_t il = 0; il < hp.n_layer; ++il) { |
|
|
|
ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); |
|
ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); |
|
ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM); |
|
|
|
|
|
{ |
|
cur = attn_norm; |
|
|
|
ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa()); |
|
|
|
cur = ggml_mul_mat(ctx, wqkv, cur); |
|
|
|
struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd))); |
|
struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd))); |
|
struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa()))); |
|
|
|
Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens); |
|
Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens); |
|
|
|
|
|
Qcur = ggml_rope_ext( |
|
ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig, |
|
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow |
|
); |
|
|
|
Kcur = ggml_rope_ext( |
|
ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig, |
|
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow |
|
); |
|
|
|
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); |
|
|
|
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); |
|
} |
|
|
|
struct ggml_tensor * ffn_inp = cur; |
|
|
|
|
|
{ |
|
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); |
|
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); |
|
cur = attn_norm; |
|
cur = ggml_mul_mat(ctx, ffn_up, cur); |
|
cur = ggml_gelu(ctx, cur); |
|
cur = ggml_mul_mat(ctx, ffn_down, cur); |
|
} |
|
|
|
cur = ggml_add(ctx, cur, ffn_inp); |
|
|
|
cur = ggml_add(ctx, cur, inpL); |
|
|
|
|
|
inpL = cur; |
|
} |
|
|
|
cur = inpL; |
|
|
|
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); |
|
ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); |
|
cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM); |
|
|
|
|
|
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab); |
|
cur = ggml_mul_mat(ctx, output, cur); |
|
|
|
return cur; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
static const ggml_type all_types[] = { |
|
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, |
|
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, |
|
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, |
|
GGML_TYPE_Q8_0, |
|
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, |
|
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, |
|
GGML_TYPE_Q6_K, |
|
|
|
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, |
|
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, |
|
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, |
|
}; |
|
|
|
static const ggml_type base_types[] = { |
|
GGML_TYPE_F32, GGML_TYPE_F16, |
|
GGML_TYPE_Q8_0, |
|
GGML_TYPE_Q4_0, |
|
GGML_TYPE_Q4_1, |
|
GGML_TYPE_Q4_K, |
|
GGML_TYPE_IQ2_XXS |
|
}; |
|
|
|
static const ggml_type other_types[] = { |
|
GGML_TYPE_Q4_1, |
|
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, |
|
GGML_TYPE_Q8_0, |
|
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, |
|
GGML_TYPE_Q5_K, |
|
GGML_TYPE_Q6_K, |
|
|
|
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, |
|
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, |
|
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, |
|
GGML_TYPE_BF16, |
|
}; |
|
|
|
|
|
static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() { |
|
std::vector<std::unique_ptr<test_case>> test_cases; |
|
std::default_random_engine rng(0); |
|
|
|
|
|
for (int v : {0, 1}) { |
|
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) { |
|
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 2, 2, 2 }, v)); |
|
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 5, 7, 11, 13 }, v)); |
|
} |
|
} |
|
|
|
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false)); |
|
for (ggml_type type : all_types) { |
|
for (int b : {1, 7}) { |
|
for (bool v : {false, true}) { |
|
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v)); |
|
} |
|
} |
|
} |
|
for (int b : {1, 7}) { |
|
for (bool v : {false, true}) { |
|
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v)); |
|
} |
|
} |
|
|
|
for (ggml_type type_input : {GGML_TYPE_F32}) { |
|
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) { |
|
for (int k0 : {1, 3}) { |
|
for (int k1 : {1, 3}) { |
|
for (int s0 : {1, 2}) { |
|
for (int s1 : {1, 2}) { |
|
for (int p0 : {0, 1}) { |
|
for (int p1 : {0, 1}) { |
|
test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); |
|
for (int s0 : {1, 3}) { |
|
for (int p0 : {0, 3}) { |
|
for (int d0 : {1, 3}) { |
|
test_cases.emplace_back(new test_im2col( |
|
GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1}, |
|
s0, 0, p0, 0, d0, 0, false)); |
|
} |
|
} |
|
} |
|
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16)); |
|
for (int s0 : {1, 3}) { |
|
for (int s1 : {1, 3}) { |
|
for (int p0 : {0, 3}) { |
|
for (int p1 : {0, 3}) { |
|
for (int d0 : {1, 3}) { |
|
for (int d1 : {1, 3}) { |
|
test_cases.emplace_back(new test_im2col( |
|
GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2}, |
|
s0, s1, p0, p1, d0, d1, true)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true)); |
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d()); |
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1)); |
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1)); |
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1)); |
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1)); |
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1)); |
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1)); |
|
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1)); |
|
|
|
test_cases.emplace_back(new test_argmax()); |
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1})); |
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1})); |
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1})); |
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1})); |
|
|
|
test_cases.emplace_back(new test_count_equal()); |
|
|
|
for (int ne3 : {1, 3}) { |
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1})); |
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1})); |
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1})); |
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1})); |
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2})); |
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1})); |
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2})); |
|
} |
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F32)); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F16)); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I32)); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I16)); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3})); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3})); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3})); |
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3})); |
|
|
|
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) { |
|
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim)); |
|
} |
|
|
|
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
|
for (ggml_type type_dst : all_types) { |
|
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4})); |
|
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); |
|
} |
|
} |
|
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
|
for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
|
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); |
|
} |
|
} |
|
|
|
test_cases.emplace_back(new test_cont()); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5})); |
|
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7})); |
|
|
|
auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) { |
|
for (auto op : {ggml_add, ggml_mul, ggml_div}) { |
|
test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr)); |
|
} |
|
}; |
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 1, 1}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 1}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 2}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 2, 2, 2}); |
|
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1}); |
|
add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1}); |
|
|
|
|
|
|
|
test_cases.emplace_back(new test_add1()); |
|
test_cases.emplace_back(new test_scale()); |
|
|
|
for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) { |
|
test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); |
|
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); |
|
} |
|
|
|
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1})); |
|
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1})); |
|
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1})); |
|
|
|
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4)); |
|
|
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1)); |
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1)); |
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4)); |
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4)); |
|
|
|
for (int i = 1; i < 9; ++i) { |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q6_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_IQ4_NL, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
|
} |
|
|
|
#if 1 |
|
for (ggml_type type_a : base_types) { |
|
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2})); |
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2})); |
|
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1})); |
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1})); |
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2})); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1})); |
|
} |
|
} |
|
for (ggml_type type_a : other_types) { |
|
for (ggml_type type_b : {GGML_TYPE_F32}) { |
|
if (ggml_blck_size(type_a) != 256) { |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1})); |
|
} |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1})); |
|
} |
|
} |
|
#else |
|
|
|
|
|
|
|
std::uniform_int_distribution<> dist_m(1, 128); |
|
std::uniform_int_distribution<> dist_n(16, 128); |
|
std::uniform_int_distribution<> dist_k(1, 16); |
|
for (int i = 0; i < 1000; i++) { |
|
for (ggml_type type_a : all_types) { |
|
for (ggml_type type_b : {GGML_TYPE_F32}) { |
|
int m = dist_m(rng); |
|
int n = dist_n(rng); |
|
int k = dist_k(rng) * ggml_blck_size(type_a); |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1})); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1})); |
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1})); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (ggml_type type_a : base_types) { |
|
for (ggml_type type_b : {GGML_TYPE_F32 }) { |
|
for (int n_mats : {4, 8}) { |
|
for (int n_used : {1, 2, 4}) { |
|
for (bool b : {false, true}) { |
|
for (int n : {1, 32}) { |
|
int m = 512; |
|
int k = 256; |
|
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (ggml_type type_a : other_types) { |
|
for (ggml_type type_b : {GGML_TYPE_F32 }) { |
|
for (int n_mats : {4}) { |
|
for (int n_used : {2}) { |
|
for (bool b : {false}) { |
|
for (int n : {1, 32}) { |
|
int m = 512; |
|
int k = 256; |
|
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (ggml_type type_a : base_types) { |
|
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, { 1, 1})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10})); |
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1}, true)); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); |
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10})); |
|
} |
|
} |
|
|
|
test_cases.emplace_back(new test_sqr()); |
|
test_cases.emplace_back(new test_sqrt()); |
|
test_cases.emplace_back(new test_log()); |
|
test_cases.emplace_back(new test_sin()); |
|
test_cases.emplace_back(new test_cos()); |
|
test_cases.emplace_back(new test_clamp()); |
|
|
|
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); |
|
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5)); |
|
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5)); |
|
|
|
#if 0 |
|
std::uniform_int_distribution<> dist_ne1(1, 50); |
|
int exponent = 1; |
|
while (exponent < (1 << 17)) { |
|
std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent); |
|
|
|
for (int n = 0; n < 10; ++n) { |
|
int64_t ne0 = dist_ne0(rng); |
|
int64_t ne1 = dist_ne1(rng); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f)); |
|
} |
|
|
|
exponent <<= 1; |
|
} |
|
#endif |
|
for (bool mask : {false, true}) { |
|
for (float max_bias : {0.0f, 8.0f}) { |
|
if (!mask && max_bias > 0.0f) continue; |
|
for (float scale : {1.0f, 0.1f}) { |
|
for (int64_t ne0 : {16, 1024}) { |
|
for (int64_t ne1 : {16, 1024}) { |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f)); |
|
|
|
{ |
|
bool all = true; |
|
|
|
for (float v : { 0, 1 }) { |
|
for (float fs : { 1.0f, 1.4245f }) { |
|
for (float ef : { 0.0f, 0.7465f }) { |
|
for (float af : { 1.0f, 1.4245f }) { |
|
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
|
for (bool ff : {false, true}) { |
|
test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); |
|
|
|
if (all) { |
|
test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); |
|
test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); |
|
test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); |
|
} |
|
|
|
if (all) { |
|
test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); |
|
test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); |
|
test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); |
|
test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v)); |
|
test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v)); |
|
} |
|
|
|
test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); |
|
} |
|
} |
|
|
|
all = false; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
for (int v : { 0, 1, 2, 3 }) { |
|
for (int dim : { 0, 1, 2, 3, }) { |
|
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v)); |
|
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v)); |
|
} |
|
} |
|
|
|
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { |
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order)); |
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); |
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); |
|
} |
|
|
|
test_cases.emplace_back(new test_sum()); |
|
test_cases.emplace_back(new test_sum_rows()); |
|
test_cases.emplace_back(new test_mean()); |
|
test_cases.emplace_back(new test_upscale()); |
|
test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true)); |
|
test_cases.emplace_back(new test_upscale_ext()); |
|
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1})); |
|
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1})); |
|
test_cases.emplace_back(new test_acc()); |
|
test_cases.emplace_back(new test_pad()); |
|
test_cases.emplace_back(new test_arange()); |
|
test_cases.emplace_back(new test_timestep_embedding()); |
|
test_cases.emplace_back(new test_leaky_relu()); |
|
|
|
for (int hs : { 64, 80, 128, 256, }) { |
|
for (bool mask : { true, false } ) { |
|
for (float max_bias : { 0.0f, 8.0f }) { |
|
if (!mask && max_bias > 0.0f) continue; |
|
for (float logit_softcap : {0.0f, 10.0f}) { |
|
if (hs != 128 && logit_softcap != 0.0f) continue; |
|
for (int nh : { 32, }) { |
|
for (int kv : { 512, 1024, }) { |
|
for (int nb : { 1, 3, 32, 35, }) { |
|
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) { |
|
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
test_cases.emplace_back(new test_cross_entropy_loss()); |
|
test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3})); |
|
|
|
|
|
#if 0 |
|
test_cases.emplace_back(new test_llama(1)); |
|
test_cases.emplace_back(new test_llama(2)); |
|
test_cases.emplace_back(new test_falcon(1)); |
|
test_cases.emplace_back(new test_falcon(2)); |
|
#endif |
|
|
|
return test_cases; |
|
} |
|
|
|
|
|
static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() { |
|
std::vector<std::unique_ptr<test_case>> test_cases; |
|
|
|
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1})); |
|
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1})); |
|
|
|
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1})); |
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f)); |
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f)); |
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1})); |
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1})); |
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1})); |
|
|
|
for (int bs : {1, 512}) { |
|
for (ggml_type type_a : all_types) { |
|
for (ggml_type type_b : {GGML_TYPE_F32}) { |
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1})); |
|
} |
|
} |
|
} |
|
|
|
return test_cases; |
|
} |
|
|
|
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { |
|
if (mode == MODE_TEST) { |
|
auto test_cases = make_test_cases_eval(); |
|
ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL); |
|
if (backend_cpu == NULL) { |
|
printf(" Failed to initialize CPU backend\n"); |
|
return false; |
|
} |
|
|
|
size_t n_ok = 0; |
|
for (auto & test : test_cases) { |
|
if (test->eval(backend, backend_cpu, op_name)) { |
|
n_ok++; |
|
} |
|
} |
|
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); |
|
|
|
ggml_backend_free(backend_cpu); |
|
|
|
return n_ok == test_cases.size(); |
|
} |
|
|
|
if (mode == MODE_GRAD) { |
|
auto test_cases = make_test_cases_eval(); |
|
size_t n_ok = 0; |
|
for (auto & test : test_cases) { |
|
if (test->eval_grad(backend, op_name)) { |
|
n_ok++; |
|
} |
|
} |
|
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); |
|
|
|
return n_ok == test_cases.size(); |
|
} |
|
|
|
if (mode == MODE_PERF) { |
|
auto test_cases = make_test_cases_perf(); |
|
for (auto & test : test_cases) { |
|
test->eval_perf(backend, op_name); |
|
} |
|
return true; |
|
} |
|
|
|
GGML_ABORT("fatal error"); |
|
} |
|
|
|
static void usage(char ** argv) { |
|
printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]); |
|
printf(" valid modes:\n"); |
|
printf(" - test (default, compare with CPU backend for correctness)\n"); |
|
printf(" - grad (compare gradients from backpropagation with method of finite differences)\n"); |
|
printf(" - perf (performance evaluation)\n"); |
|
printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n"); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
test_mode mode = MODE_TEST; |
|
const char * op_name_filter = NULL; |
|
const char * backend_filter = NULL; |
|
|
|
for (int i = 1; i < argc; i++) { |
|
if (strcmp(argv[i], "test") == 0) { |
|
mode = MODE_TEST; |
|
} else if (strcmp(argv[i], "perf") == 0) { |
|
mode = MODE_PERF; |
|
} else if (strcmp(argv[i], "grad") == 0) { |
|
mode = MODE_GRAD; |
|
} else if (strcmp(argv[i], "-o") == 0) { |
|
if (i + 1 < argc) { |
|
op_name_filter = argv[++i]; |
|
} else { |
|
usage(argv); |
|
return 1; |
|
} |
|
} else if (strcmp(argv[i], "-b") == 0) { |
|
if (i + 1 < argc) { |
|
backend_filter = argv[++i]; |
|
} else { |
|
usage(argv); |
|
return 1; |
|
} |
|
} else { |
|
usage(argv); |
|
return 1; |
|
} |
|
} |
|
|
|
|
|
ggml_backend_load_all(); |
|
|
|
printf("Testing %zu devices\n\n", ggml_backend_dev_count()); |
|
|
|
size_t n_ok = 0; |
|
|
|
for (size_t i = 0; i < ggml_backend_dev_count(); i++) { |
|
ggml_backend_dev_t dev = ggml_backend_dev_get(i); |
|
|
|
printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev)); |
|
|
|
if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) { |
|
printf(" Skipping\n"); |
|
n_ok++; |
|
continue; |
|
} |
|
|
|
if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) { |
|
printf(" Skipping CPU backend\n"); |
|
n_ok++; |
|
continue; |
|
} |
|
|
|
ggml_backend_t backend = ggml_backend_dev_init(dev, NULL); |
|
GGML_ASSERT(backend != NULL); |
|
|
|
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev); |
|
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); |
|
if (ggml_backend_set_n_threads_fn) { |
|
|
|
ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency()); |
|
} |
|
|
|
printf(" Device description: %s\n", ggml_backend_dev_description(dev)); |
|
size_t free, total; |
|
ggml_backend_dev_memory(dev, &free, &total); |
|
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024); |
|
printf("\n"); |
|
|
|
bool ok = test_backend(backend, mode, op_name_filter); |
|
|
|
printf(" Backend %s: ", ggml_backend_name(backend)); |
|
if (ok) { |
|
printf("\033[1;32mOK\033[0m\n"); |
|
n_ok++; |
|
} else { |
|
printf("\033[1;31mFAIL\033[0m\n"); |
|
} |
|
|
|
printf("\n"); |
|
|
|
ggml_backend_free(backend); |
|
} |
|
|
|
ggml_quantize_free(); |
|
|
|
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count()); |
|
|
|
if (n_ok != ggml_backend_dev_count()) { |
|
printf("\033[1;31mFAIL\033[0m\n"); |
|
return 1; |
|
} |
|
|
|
printf("\033[1;32mOK\033[0m\n"); |
|
return 0; |
|
} |
|
|