|
#include "ggml.h" |
|
#include "llama.h" |
|
|
|
#ifdef NDEBUG |
|
#undef NDEBUG |
|
#endif |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <string> |
|
#include <vector> |
|
|
|
extern struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers); |
|
|
|
static void dump(const llama_token_data_array * cur_p) { |
|
for (size_t i = 0; i < cur_p->size; i++) { |
|
printf("%d: %f (%f)\n", cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); |
|
} |
|
} |
|
|
|
#define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0) |
|
|
|
struct sampler_tester { |
|
sampler_tester(size_t n_vocab) { |
|
cur.reserve(n_vocab); |
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { |
|
const float logit = logf(token_id); |
|
cur.emplace_back(llama_token_data{token_id, logit, 0.0f}); |
|
} |
|
|
|
cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false }; |
|
} |
|
|
|
sampler_tester(const std::vector<float> & probs, const std::vector<float> & probs_expected) : probs_expected(probs_expected) { |
|
cur.reserve(probs.size()); |
|
for (llama_token token_id = 0; token_id < (llama_token)probs.size(); token_id++) { |
|
const float logit = logf(probs[token_id]); |
|
cur.emplace_back(llama_token_data{token_id, logit, probs[token_id]}); |
|
} |
|
|
|
cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false }; |
|
} |
|
|
|
void apply(llama_sampler * sampler) { |
|
llama_sampler_apply(sampler, &cur_p); |
|
llama_sampler_free(sampler); |
|
} |
|
|
|
void check() { |
|
GGML_ASSERT(cur_p.size == probs_expected.size()); |
|
for (size_t i = 0; i < cur_p.size; i++) { |
|
GGML_ASSERT(fabs(cur_p.data[i].p - probs_expected[i]) < 1e-5); |
|
} |
|
} |
|
|
|
llama_token_data_array cur_p; |
|
|
|
private: |
|
const std::vector<float> probs_expected; |
|
|
|
std::vector<llama_token_data> cur; |
|
}; |
|
|
|
static void test_temp(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp) { |
|
sampler_tester tester(probs, probs_expected); |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(llama_sampler_init_temp(temp)); |
|
tester.apply(llama_sampler_init_dist(0)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_temp_ext(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp, float delta, float exponent) { |
|
sampler_tester tester(probs, probs_expected); |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(llama_sampler_init_temp_ext(temp, delta, exponent)); |
|
tester.apply(llama_sampler_init_dist (0)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & probs_expected, int k) { |
|
sampler_tester tester(probs, probs_expected); |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(llama_sampler_init_top_k(k)); |
|
tester.apply(llama_sampler_init_dist (0)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) { |
|
sampler_tester tester(probs, probs_expected); |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(llama_sampler_init_top_p(p, 1)); |
|
tester.apply(llama_sampler_init_dist (0)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) { |
|
sampler_tester tester(probs, probs_expected); |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(llama_sampler_init_min_p(p, 1)); |
|
tester.apply(llama_sampler_init_dist (0)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_xtc(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p, float t) { |
|
sampler_tester tester(probs, probs_expected); |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(llama_sampler_init_xtc(p, t, 0, 0)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_typical(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) { |
|
sampler_tester tester(probs, probs_expected); |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(llama_sampler_init_typical(p, 1)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_penalties( |
|
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens, |
|
const std::vector<float> & probs_expected, float repeat_penalty, float alpha_frequency, float alpha_presence |
|
) { |
|
GGML_ASSERT(probs.size() == probs_expected.size()); |
|
|
|
sampler_tester tester(probs, probs_expected); |
|
|
|
const size_t n_vocab = probs.size(); |
|
auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false); |
|
|
|
for (size_t i = 0; i < last_tokens.size(); i++) { |
|
llama_sampler_accept(sampler, last_tokens[i]); |
|
} |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(sampler); |
|
tester.apply(llama_sampler_init_dist(0)); |
|
DUMP(&tester.cur_p); |
|
|
|
tester.check(); |
|
} |
|
|
|
static void test_dry( |
|
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens, |
|
const std::vector<float> & expected_probs, float dry_multiplier, float dry_base, |
|
int dry_allowed_length, int dry_penalty_last_n, |
|
const std::vector<std::vector<llama_token>> & seq_breakers |
|
) { |
|
GGML_ASSERT(probs.size() == expected_probs.size()); |
|
|
|
sampler_tester tester(probs, expected_probs); |
|
|
|
auto * sampler = llama_sampler_init_dry_testing(1024, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, seq_breakers); |
|
|
|
for (size_t i = 0; i < last_tokens.size(); i++) { |
|
llama_sampler_accept(sampler, last_tokens[i]); |
|
} |
|
|
|
DUMP(&tester.cur_p); |
|
tester.apply(sampler); |
|
tester.apply(llama_sampler_init_dist(0)); |
|
DUMP(&tester.cur_p); |
|
tester.check(); |
|
} |
|
|
|
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p |
|
) { |
|
sampler_tester tester(n_vocab); |
|
|
|
llama_token min_token_id = 0; |
|
const llama_token max_token_id = n_vocab-1; |
|
|
|
for (auto s : samplers_sequence) { |
|
switch (s){ |
|
case 'k': tester.apply(llama_sampler_init_top_k(top_k)); break; |
|
case 'y': GGML_ABORT("typical test not implemented"); |
|
case 'p': tester.apply(llama_sampler_init_top_p(top_p, 1)); break; |
|
case 'm': tester.apply(llama_sampler_init_min_p(min_p, 1)); break; |
|
case 't': GGML_ABORT("temperature test not implemented"); |
|
default : GGML_ABORT("Unknown sampler"); |
|
} |
|
|
|
tester.apply(llama_sampler_init_dist(0)); |
|
|
|
auto & cur_p = tester.cur_p; |
|
|
|
const int size = cur_p.size; |
|
|
|
if (s == 'k') { |
|
const int expected_size = std::min(size, top_k); |
|
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k)); |
|
|
|
GGML_ASSERT(size == expected_size); |
|
GGML_ASSERT(cur_p.data[0].id == max_token_id); |
|
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id); |
|
} else if (s == 'p') { |
|
const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2; |
|
const int softmax_numerator_target = ceilf(top_p * softmax_divisor); |
|
|
|
min_token_id = n_vocab; |
|
int expected_size = 0; |
|
int cumsum = 0; |
|
do { |
|
min_token_id--; |
|
expected_size++; |
|
|
|
cumsum += min_token_id; |
|
} while (cumsum < softmax_numerator_target); |
|
|
|
|
|
if (min_token_id == 1) { |
|
min_token_id--; |
|
expected_size += 1; |
|
} |
|
|
|
GGML_ASSERT(size == expected_size); |
|
GGML_ASSERT(cur_p.data[0].id == max_token_id); |
|
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id); |
|
} else if (s == 'm') { |
|
int expected_size = ceilf((1.0f-min_p) * n_vocab); |
|
expected_size = std::max(expected_size, 1); |
|
expected_size = std::min(expected_size, size); |
|
|
|
min_token_id = floorf(min_p * n_vocab); |
|
min_token_id = std::max(min_token_id, 1); |
|
min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size)); |
|
min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1)); |
|
|
|
GGML_ASSERT(size == expected_size); |
|
GGML_ASSERT(cur_p.data[0].id == max_token_id); |
|
GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id); |
|
} else { |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
printf("Sampler queue %3s OK with n_vocab=%05zu top_k=%05d top_p=%f min_p=%f\n", |
|
samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p); |
|
} |
|
|
|
static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector<llama_token_data> & data, int n_iter) { |
|
std::vector<llama_token_data> cur(data.size()); |
|
std::copy(data.begin(), data.end(), cur.begin()); |
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false }; |
|
llama_sampler_apply(cnstr, &cur_p); |
|
llama_sampler_reset(cnstr); |
|
const int64_t t_start = ggml_time_us(); |
|
for (int i = 0; i < n_iter; i++) { |
|
std::copy(data.begin(), data.end(), cur.begin()); |
|
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false }; |
|
llama_sampler_apply(cnstr, &cur_p); |
|
llama_sampler_reset(cnstr); |
|
} |
|
const int64_t t_end = ggml_time_us(); |
|
llama_sampler_free(cnstr); |
|
printf("%-43s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter); |
|
} |
|
|
|
#define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter)) |
|
|
|
static void test_perf() { |
|
const int n_vocab = 1 << 17; |
|
|
|
std::vector<llama_token_data> data; |
|
|
|
data.reserve(n_vocab); |
|
for (int i = 0; i < n_vocab; i++) { |
|
const float logit = 2.0f*((double)(rand())/RAND_MAX - 0.5); |
|
data.emplace_back(llama_token_data{i, logit, 0.0f}); |
|
} |
|
|
|
BENCH(llama_sampler_init_top_k (40), data, 32); |
|
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32); |
|
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32); |
|
BENCH(llama_sampler_init_typical(0.5f, 1), data, 32); |
|
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32); |
|
} |
|
|
|
int main(void) { |
|
ggml_time_init(); |
|
|
|
test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f); |
|
test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f); |
|
|
|
test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f, 0.0f, 1.0f); |
|
test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f, 0.0f, 1.0f); |
|
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 1); |
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 3); |
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4); |
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0); |
|
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 0); |
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f}, 0.7f); |
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 0.8f); |
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f); |
|
|
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f); |
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f); |
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f); |
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f); |
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f); |
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f); |
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f); |
|
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f); |
|
|
|
printf("XTC should:\n"); |
|
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.1f}, 0.99f, 0.09f); |
|
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.2f, 0.1f}, 0.99f, 0.19f); |
|
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.3f, 0.2f, 0.1f}, 0.99f, 0.29f); |
|
|
|
printf("XTC should not:\n"); |
|
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.39f); |
|
|
|
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); |
|
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); |
|
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f); |
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); |
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f); |
|
|
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f); |
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f); |
|
test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f); |
|
|
|
|
|
test_dry({0.25f, 0.25f, 0.25f, 0.25f}, {0, 1}, {0.25f, 0.25f, 0.25f, 0.25f}, 1.0f, 1.1f, 2, 4, {}); |
|
test_dry({0.25f, 0.25f, 0.25f, 0.25f}, {0, 1, 2, 0, 1}, {0.296923f, 0.296923f, 0.296923f, 0.109232f}, 1.0f, 1.1f, 2, 5, {}); |
|
test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 2, 6, {{3}}); |
|
test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 1}, {0.241818f, 0.241818f, 0.241818f, 0.241818f, 0.032727f}, 2.0f, 1.1f, 2, 5, {}); |
|
test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 4, 7, {}); |
|
|
|
test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f); |
|
test_sampler_queue(10000, "k", 1, 1.0f, 1.0f); |
|
test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f); |
|
test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f); |
|
test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f); |
|
test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12); |
|
|
|
test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f); |
|
test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f); |
|
test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f); |
|
test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f); |
|
test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f); |
|
|
|
test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "km", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f); |
|
test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f); |
|
|
|
test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f); |
|
test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f); |
|
|
|
printf("OK\n"); |
|
|
|
test_perf(); |
|
|
|
return 0; |
|
} |
|
|