desert
commited on
Commit
·
b2af35c
1
Parent(s):
dd71874
init inference
Browse files- app.py +19 -46
- requirements.txt +0 -1
app.py
CHANGED
@@ -1,29 +1,12 @@
|
|
1 |
-
import os
|
2 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
from
|
6 |
-
import torch
|
7 |
-
|
8 |
-
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
9 |
-
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
10 |
-
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
# Load model and tokenizer with the device set to "cpu"
|
16 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
17 |
-
model_name="llama_lora_model_1",
|
18 |
-
max_seq_length=max_seq_length,
|
19 |
-
dtype=dtype,
|
20 |
-
load_in_4bit=load_in_4bit,
|
21 |
-
)
|
22 |
|
23 |
-
# Move the model to CPU (even if it was initially loaded with GPU support)
|
24 |
-
model.to(device)
|
25 |
-
|
26 |
-
# Respond function
|
27 |
def respond(
|
28 |
message,
|
29 |
history: list[tuple[str, str]],
|
@@ -32,44 +15,34 @@ def respond(
|
|
32 |
temperature,
|
33 |
top_p,
|
34 |
):
|
35 |
-
# Prepare the system message
|
36 |
messages = [{"role": "system", "content": system_message}]
|
37 |
|
38 |
-
# Add history to the messages
|
39 |
for val in history:
|
40 |
if val[0]:
|
41 |
messages.append({"role": "user", "content": val[0]})
|
42 |
if val[1]:
|
43 |
messages.append({"role": "assistant", "content": val[1]})
|
44 |
|
45 |
-
# Add the current message from the user
|
46 |
messages.append({"role": "user", "content": message})
|
47 |
|
48 |
-
|
49 |
-
inputs = tokenizer.apply_chat_template(
|
50 |
-
messages,
|
51 |
-
tokenize=True,
|
52 |
-
add_generation_prompt=True,
|
53 |
-
return_tensors="pt",
|
54 |
-
)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
temperature=temperature,
|
61 |
top_p=top_p,
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
# Decode the generated output
|
66 |
-
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
71 |
|
72 |
-
|
|
|
|
|
73 |
demo = gr.ChatInterface(
|
74 |
respond,
|
75 |
additional_inputs=[
|
@@ -86,6 +59,6 @@ demo = gr.ChatInterface(
|
|
86 |
],
|
87 |
)
|
88 |
|
89 |
-
if __name__ == "__main__":
|
90 |
-
demo.launch()
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("Mat17892/llama_lora_G14")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
+
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
|
|
|
|
|
|
38 |
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
|
42 |
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
|
|
59 |
],
|
60 |
)
|
61 |
|
|
|
|
|
62 |
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,2 +1 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
-
unsloth
|
|
|
1 |
huggingface_hub==0.25.2
|
|