desert commited on
Commit
b2af35c
·
1 Parent(s): dd71874

init inference

Browse files
Files changed (2) hide show
  1. app.py +19 -46
  2. requirements.txt +0 -1
app.py CHANGED
@@ -1,29 +1,12 @@
1
- import os
2
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
3
-
4
  import gradio as gr
5
- from unsloth import FastLanguageModel
6
- import torch
7
-
8
- max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
9
- dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
10
- load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
11
 
12
- # Force the model to run on CPU only by setting the device to "cpu"
13
- device = "cpu"
 
 
14
 
15
- # Load model and tokenizer with the device set to "cpu"
16
- model, tokenizer = FastLanguageModel.from_pretrained(
17
- model_name="llama_lora_model_1",
18
- max_seq_length=max_seq_length,
19
- dtype=dtype,
20
- load_in_4bit=load_in_4bit,
21
- )
22
 
23
- # Move the model to CPU (even if it was initially loaded with GPU support)
24
- model.to(device)
25
-
26
- # Respond function
27
  def respond(
28
  message,
29
  history: list[tuple[str, str]],
@@ -32,44 +15,34 @@ def respond(
32
  temperature,
33
  top_p,
34
  ):
35
- # Prepare the system message
36
  messages = [{"role": "system", "content": system_message}]
37
 
38
- # Add history to the messages
39
  for val in history:
40
  if val[0]:
41
  messages.append({"role": "user", "content": val[0]})
42
  if val[1]:
43
  messages.append({"role": "assistant", "content": val[1]})
44
 
45
- # Add the current message from the user
46
  messages.append({"role": "user", "content": message})
47
 
48
- # Prepare the inputs for the model
49
- inputs = tokenizer.apply_chat_template(
50
- messages,
51
- tokenize=True,
52
- add_generation_prompt=True,
53
- return_tensors="pt",
54
- )
55
 
56
- # Generate the response using your model on CPU
57
- outputs = model.generate(
58
- input_ids=inputs["input_ids"].to(device), # Ensure input is on the CPU
59
- max_new_tokens=max_tokens,
60
  temperature=temperature,
61
  top_p=top_p,
62
- use_cache=True,
63
- )
64
-
65
- # Decode the generated output
66
- response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
67
 
68
- # Return the response
69
- return response[0]
70
 
71
 
72
- # Gradio interface setup
 
 
73
  demo = gr.ChatInterface(
74
  respond,
75
  additional_inputs=[
@@ -86,6 +59,6 @@ demo = gr.ChatInterface(
86
  ],
87
  )
88
 
89
- if __name__ == "__main__":
90
- demo.launch()
91
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("Mat17892/llama_lora_G14")
8
 
 
 
 
 
 
 
 
9
 
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
 
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
+ response = ""
 
 
 
 
 
 
29
 
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
 
 
 
38
 
39
+ response += token
40
+ yield response
41
 
42
 
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
 
59
  ],
60
  )
61
 
 
 
62
 
63
+ if __name__ == "__main__":
64
+ demo.launch()
requirements.txt CHANGED
@@ -1,2 +1 @@
1
  huggingface_hub==0.25.2
2
- unsloth
 
1
  huggingface_hub==0.25.2