desert
commited on
Commit
•
eb2e235
1
Parent(s):
7b6b9cb
init inference
Browse files
app.py
CHANGED
@@ -1,75 +1,66 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from llama_cpp import Llama
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
# Download the GGUF file from Hugging Face
|
9 |
-
lora_adapter_path = hf_hub_download(repo_id=adapter_repo, filename="llama_lora_adapter.gguf")
|
10 |
-
|
11 |
-
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
# Download the base model GGUF file
|
14 |
-
|
15 |
base_model_path = hf_hub_download(repo_id=base_model_repo, filename="Llama-3.2-3B-Instruct-Q8_0.gguf")
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
prompt = ""
|
38 |
for user, ai in chat_history:
|
39 |
prompt += f"User: {user}\nAI: {ai}\n"
|
40 |
-
prompt += f"User: {user_input}\nAI:" # Add
|
41 |
|
42 |
-
# Generate response
|
43 |
-
|
44 |
|
45 |
-
#
|
46 |
-
response = raw_response.split("User:")[0].strip()
|
47 |
-
|
48 |
-
# Update chat history with the new turn
|
49 |
chat_history.append((user_input, response))
|
50 |
return chat_history, chat_history
|
51 |
|
52 |
-
|
53 |
-
# Gradio UI
|
54 |
with gr.Blocks() as demo:
|
55 |
-
gr.Markdown("# 🦙 LLaMA
|
56 |
-
chatbot = gr.Chatbot(label="Chat with the
|
57 |
|
58 |
with gr.Row():
|
59 |
with gr.Column(scale=4):
|
60 |
user_input = gr.Textbox(label="Your Message", placeholder="Type a message...")
|
61 |
-
with gr.Column(scale=
|
62 |
-
submit_btn = gr.Button("Send")
|
63 |
-
|
64 |
-
chat_history = gr.State([])
|
65 |
-
|
66 |
-
# Link components
|
67 |
-
submit_btn.click(
|
68 |
-
chat_with_model,
|
69 |
-
inputs=[user_input, chat_history],
|
70 |
-
outputs=[chatbot, chat_history],
|
71 |
-
show_progress=True,
|
72 |
-
)
|
73 |
-
|
74 |
-
# Launch the app
|
75 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
import gradio as gr
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
+
# Hugging Face repository IDs
|
7 |
+
base_model_repo = "unsloth/Llama-3.2-3B-Instruct-GGUF"
|
8 |
+
adapter_repo = "Mat17892/llama_lora_gguf"
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Download the base model GGUF file
|
11 |
+
print("Downloading base model...")
|
12 |
base_model_path = hf_hub_download(repo_id=base_model_repo, filename="Llama-3.2-3B-Instruct-Q8_0.gguf")
|
13 |
|
14 |
+
# Download the LoRA adapter GGUF file
|
15 |
+
print("Downloading LoRA adapter...")
|
16 |
+
lora_adapter_path = hf_hub_download(repo_id=adapter_repo, filename="llama_lora_adapter.gguf")
|
17 |
|
18 |
+
# Function to run `llama-cli` with base model and adapter
|
19 |
+
def run_llama_cli(prompt):
|
20 |
+
print("Running inference with llama-cli...")
|
21 |
+
cmd = [
|
22 |
+
"./llama-cli",
|
23 |
+
"-c", "2048", # Context length
|
24 |
+
"-cnv", # Enable conversational mode
|
25 |
+
"-m", base_model_path,
|
26 |
+
"--lora", lora_adapter_path,
|
27 |
+
"--prompt", prompt,
|
28 |
+
]
|
29 |
+
try:
|
30 |
+
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
31 |
+
stdout, stderr = process.communicate()
|
32 |
+
|
33 |
+
if process.returncode != 0:
|
34 |
+
print("Error during inference:")
|
35 |
+
print(stderr.decode())
|
36 |
+
return "Error: Could not generate response."
|
37 |
+
|
38 |
+
return stdout.decode().strip()
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Exception occurred: {e}")
|
41 |
+
return "Error: Could not generate response."
|
42 |
+
|
43 |
+
# Gradio interface
|
44 |
+
def chatbot_fn(user_input, chat_history):
|
45 |
+
# Build the full chat history as the prompt
|
46 |
prompt = ""
|
47 |
for user, ai in chat_history:
|
48 |
prompt += f"User: {user}\nAI: {ai}\n"
|
49 |
+
prompt += f"User: {user_input}\nAI:" # Add latest user input
|
50 |
|
51 |
+
# Generate response using llama-cli
|
52 |
+
response = run_llama_cli(prompt)
|
53 |
|
54 |
+
# Update chat history
|
|
|
|
|
|
|
55 |
chat_history.append((user_input, response))
|
56 |
return chat_history, chat_history
|
57 |
|
58 |
+
# Build the Gradio UI
|
|
|
59 |
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("# 🦙 LLaMA Chatbot with Base Model and LoRA Adapter")
|
61 |
+
chatbot = gr.Chatbot(label="Chat with the Model")
|
62 |
|
63 |
with gr.Row():
|
64 |
with gr.Column(scale=4):
|
65 |
user_input = gr.Textbox(label="Your Message", placeholder="Type a message...")
|
66 |
+
with gr.Column(scale=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|