import gradio as gr from unsloth import FastLanguageModel import torch # Load your model and tokenizer (make sure to adjust the path to where your model is stored) max_seq_length = 2048 # Adjust as necessary load_in_4bit = True # Enable 4-bit quantization for reduced memory usage model_path = "/content/drive/My Drive/llama_lora_model_1" # Path to your custom model # Load the model and tokenizer model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_path, max_seq_length=max_seq_length, load_in_4bit=load_in_4bit, ) # Move model to GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) # Respond function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the system message messages = [{"role": "system", "content": system_message}] # Add history to the messages for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add the current message from the user messages.append({"role": "user", "content": message}) # Prepare the inputs for the model inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", ).to(device) # Generate the response using your model outputs = model.generate( input_ids=inputs["input_ids"], max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, use_cache=True, ) # Decode the generated output response = tokenizer.batch_decode(outputs, skip_special_tokens=True) # Return the response return response[0] # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()