import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load your model and tokenizer model_name = "Mat17892/llama_lora_model_1" # Replace with your Hugging Face model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Prepare input for the model input_text = message inputs = tokenizer(input_text, return_tensors="pt") # Generate response outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) if __name__ == "__main__": demo.launch()