#include "speculative.h" #include "log.h" #include "common.h" #include "sampling.h" #include #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128 #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 struct common_speculative { struct llama_context * ctx; struct common_sampler * smpl; llama_batch batch; llama_tokens prompt; }; struct common_speculative * common_speculative_init( struct llama_context * ctx_dft) { auto * result = new common_speculative { /* .ctx = */ ctx_dft, /* .smpl = */ nullptr, /* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1), /* .prompt = */ {}, }; // TODO: optimize or pass from outside? #if 0 { common_params_sampling params; params.no_perf = false; params.top_k = 40; params.top_p = 0.9; params.samplers = { COMMON_SAMPLER_TYPE_TOP_K, COMMON_SAMPLER_TYPE_TOP_P, COMMON_SAMPLER_TYPE_INFILL, }; result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); } #else { common_params_sampling params; params.no_perf = false; params.top_k = 10; params.samplers = { COMMON_SAMPLER_TYPE_TOP_K, }; result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); } #endif return result; } void common_speculative_free(struct common_speculative * spec) { common_sampler_free(spec->smpl); llama_batch_free(spec->batch); delete spec; } bool common_speculative_are_compatible( const struct llama_context * ctx_tgt, const struct llama_context * ctx_dft) { const struct llama_model * model_tgt = llama_get_model(ctx_tgt); const struct llama_model * model_dft = llama_get_model(ctx_dft); const bool vocab_type_tgt = llama_vocab_type(model_tgt); LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt); const bool vocab_type_dft = llama_vocab_type(model_dft); LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft); if (vocab_type_tgt != vocab_type_dft) { LOG_ERR("%s: draft model vocab type must match target model to use speculation but " "vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt); return false; } if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) || llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) || llama_token_bos(model_tgt) != llama_token_bos(model_dft) || llama_token_eos(model_tgt) != llama_token_eos(model_dft)) { LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__); LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt)); LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft)); return false; } { const int n_vocab_tgt = llama_n_vocab(model_tgt); const int n_vocab_dft = llama_n_vocab(model_dft); const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft); if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { LOG_ERR("%s: draft model vocab must closely match target model to use speculation but " "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", __func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); return false; } for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) { const char * token_text_tgt = llama_token_get_text(model_tgt, i); const char * token_text_dft = llama_token_get_text(model_dft, i); if (std::strcmp(token_text_tgt, token_text_dft) != 0) { LOG_ERR("%s: draft model vocab must match target model to use speculation but " "token %d content differs - target '%s', draft '%s'\n", __func__, i, common_token_to_piece(ctx_tgt, i).c_str(), common_token_to_piece(ctx_dft, i).c_str()); return false; } } } return true; } llama_tokens common_speculative_gen_draft( struct common_speculative * spec, struct common_speculative_params params, const llama_tokens & prompt_tgt, llama_token id_last) { auto & batch = spec->batch; auto & ctx = spec->ctx; auto & smpl = spec->smpl; auto & prompt = spec->prompt; int reuse_i = 0; int reuse_n = 0; const int n_ctx = llama_n_ctx(ctx) - params.n_draft; const int i_start = std::max(0, (int) prompt_tgt.size() - n_ctx); // reuse as much as possible from the old draft context // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt for (int i = 0; i < (int) prompt.size(); ++i) { int cur = 0; while (i_start + cur < (int) prompt_tgt.size() && i + cur < (int) prompt.size() && prompt_tgt[i_start + cur] == prompt[i + cur]) { cur++; } if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) { reuse_i = i; reuse_n = cur; } } LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size()); llama_tokens result; result.reserve(params.n_draft); if (reuse_n == 0) { llama_kv_cache_clear(ctx); prompt.clear(); } else { // this happens when a previous draft has been discarded (for example, due to being too small), but the // target model agreed with it. in this case, we simply pass back the previous results to save compute if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) { for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) { result.push_back(prompt[i]); if (params.n_draft <= (int) result.size()) { break; } } return result; } if (reuse_i > 0) { llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i); llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i); prompt.erase(prompt.begin(), prompt.begin() + reuse_i); } if (reuse_n < (int) prompt.size()) { llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1); prompt.erase(prompt.begin() + reuse_n, prompt.end()); } } // prepare a batch to evaluate any new tokens in the prompt common_batch_clear(batch); for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) { //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]); common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false); prompt.push_back(prompt_tgt[i]); } // we should rarely end-up here during normal decoding if (batch.n_tokens > 0) { //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str()); llama_decode(ctx, batch); } const llama_pos n_past = prompt.size(); LOG_DBG("%s: n_past = %d\n", __func__, n_past); common_batch_clear(batch); common_batch_add (batch, id_last, n_past, { 0 }, true); prompt.push_back(id_last); //LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str()); llama_decode(ctx, batch); common_sampler_reset(smpl); // sample n_draft tokens from the draft model for (int i = 0; i < params.n_draft; ++i) { common_batch_clear(batch); common_sampler_sample(smpl, ctx, 0, true); const auto * cur_p = common_sampler_get_candidates(smpl); for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str()); } // add drafted token for each sequence const llama_token id = cur_p->data[0].id; // only collect very high-confidence draft tokens if (cur_p->data[0].p < params.p_min) { break; } common_sampler_accept(smpl, id, true); result.push_back(id); if (params.n_draft <= (int) result.size()) { break; } common_batch_add(batch, id, n_past + i + 1, { 0 }, true); // evaluate the drafted tokens on the draft model llama_decode(ctx, batch); prompt.push_back(id); } return result; }