from transformers import AutoTokenizer, AutoModelForSequenceClassification # import torch # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # device download = False save_model_locally= False if download: tokenizer = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-sentiment", cache_dir="data/") model = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-sentiment", cache_dir="data/") model.eval() tokenizer_emo = AutoTokenizer.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/") model_emo = AutoModelForSequenceClassification.from_pretrained("MilaNLProc/feel-it-italian-emotion", cache_dir="data/") model_emo.eval() if save_model_locally: model.save_pretrained('./local_models/sentiment_ITA') tokenizer.save_pretrained('./local_models/sentiment_ITA') model_emo.save_pretrained('./local_models/emotion_ITA') tokenizer_emo.save_pretrained('./local_models/emotion_ITA') else: tokenizer = AutoTokenizer.from_pretrained("./local_models/sentiment_ITA/") model = AutoModelForSequenceClassification.from_pretrained("./local_models/sentiment_ITA/", num_labels=2) model.eval() tokenizer_emo = AutoTokenizer.from_pretrained("./local_models/emotion_ITA/") model_emo = AutoModelForSequenceClassification.from_pretrained("./local_models/emotion_ITA/", num_labels=4) model_emo.eval() #%% from transformers import pipeline import re generator = pipeline(task="text-classification", model=model, tokenizer=tokenizer, return_all_scores =True) generator_emo = pipeline(task="text-classification", model=model_emo, tokenizer=tokenizer_emo, return_all_scores =True) def sentiment_emoji(input_abs): if(input_abs ==""): return "🤷‍♂️" res = generator(input_abs)[0] res = {res[x]["label"]: res[x]["score"] for x in range(len(res))} res["🙂 positive"] = res.pop("positive") res["🙁 negative"] = res.pop("negative") return res def emotion_emoji(input_abs): if(input_abs ==""): return "🤷‍♂️" res = generator_emo(input_abs)[0] res = {res[x]["label"]: res[x]["score"] for x in range(len(res))} res["😃 joy"] = res.pop("joy") res["😡 anger"] = res.pop("anger") res["😨 fear"] = res.pop("fear") res["😟 sadness"] = res.pop("sadness") return res #%% import gradio as gr demo = gr.Blocks() with demo: gr.Markdown("# Analisi sentimento/emozioni del testo italiano") with gr.Row(): with gr.Column(): text_input = gr.Textbox(placeholder="Scrivi qui") button_1 = gr.Button("Invia") with gr.Column(): label_sem = gr.Label() label_emo = gr.Label() # gr.Interface(fn=emotion_emoji, inputs=text_input, outputs="label") button_1.click(sentiment_emoji, inputs=text_input, outputs=label_sem, api_name="sentiment") button_1.click(emotion_emoji, inputs=text_input, outputs=label_emo, api_name="emotion") demo.launch(share=True) print("Running is terminated")