MatthiasPicard's picture
Update tasks/text.py
49e0f41 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding
from datasets import Dataset
import torch
import numpy as np
router = APIRouter()
DESCRIPTION = "modernBERT_final_original"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
# predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
# Chemins du modèle et du tokenizer
path_model = 'MatthiasPicard/modernBERT_final_original'
path_tokenizer = "answerdotai/ModernBERT-base"
# Détection du GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Charger le modèle et le tokenizer
model = AutoModelForSequenceClassification.from_pretrained(path_model).half().to(device) # Model en half precision sur GPU
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)
# Fonction de préprocessing
def preprocess_function(df):
tokenized = tokenizer(df["quote"], truncation=True) # Removed padding here
return tokenized
# Appliquer le préprocessing
tokenized_test = test_dataset.map(preprocess_function, batched=True)
# Convertir le dataset au format PyTorch
tokenized_test.set_format(type="torch", columns=["input_ids", "attention_mask"])
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Créer le DataLoader avec un batch_size > 1 pour optimiser le passage GPU
batch_size = 16 # Ajuster selon la mémoire dispo sur GPU
test_loader = DataLoader(tokenized_test, batch_size=batch_size, collate_fn=data_collator)
model = model.half()
model.eval()
# Inférence sur GPU
predictions = []
with torch.no_grad():
for batch in test_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
logits = outputs.logits
preds = torch.argmax(logits, dim=-1)
predictions.extend(preds.cpu().numpy()) # Remettre sur CPU pour stockage
# path_model = 'MatthiasPicard/checkpoint4200_batch16_modern_bert_valloss_0.79_0.74acc'
# path_tokenizer = "answerdotai/ModernBERT-base"
# model = AutoModelForSequenceClassification.from_pretrained(path_model)
# tokenizer = AutoTokenizer.from_pretrained(path_tokenizer)
# def preprocess_function(df):
# return tokenizer(df["quote"], truncation=True)
# tokenized_test = test_dataset.map(preprocess_function, batched=True)
# # training_args = torch.load("training_args.bin")
# # training_args.eval_strategy='no'
# model = model.half()
# model.eval()
# data_collator = DataCollatorWithPadding(tokenizer)
# trainer = Trainer(
# model=model,
# # args=training_args,
# tokenizer=tokenizer,
# data_collator=data_collator
# )
# trainer.args.per_device_eval_batch_size = 16
# preds = trainer.predict(tokenized_test)
# predictions = np.array([np.argmax(x) for x in preds[0]])
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results