Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from torch.utils.data import DataLoader | |
from sklearn.metrics import accuracy_score | |
import random | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding | |
from datasets import Dataset | |
import torch | |
import numpy as np | |
router = APIRouter() | |
DESCRIPTION = "modernBERT_final_original" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-7) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
# Convert string labels to integers | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
# Split dataset | |
train_test = dataset["train"] | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
true_labels = test_dataset["label"] | |
# predictions = [random.randint(0, 7) for _ in range(len(true_labels))] | |
# Chemins du modèle et du tokenizer | |
path_model = 'MatthiasPicard/modernBERT_final_original' | |
path_tokenizer = "answerdotai/ModernBERT-base" | |
# Détection du GPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Charger le modèle et le tokenizer | |
model = AutoModelForSequenceClassification.from_pretrained(path_model).half().to(device) # Model en half precision sur GPU | |
tokenizer = AutoTokenizer.from_pretrained(path_tokenizer) | |
# Fonction de préprocessing | |
def preprocess_function(df): | |
tokenized = tokenizer(df["quote"], truncation=True) # Removed padding here | |
return tokenized | |
# Appliquer le préprocessing | |
tokenized_test = test_dataset.map(preprocess_function, batched=True) | |
# Convertir le dataset au format PyTorch | |
tokenized_test.set_format(type="torch", columns=["input_ids", "attention_mask"]) | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
# Créer le DataLoader avec un batch_size > 1 pour optimiser le passage GPU | |
batch_size = 16 # Ajuster selon la mémoire dispo sur GPU | |
test_loader = DataLoader(tokenized_test, batch_size=batch_size, collate_fn=data_collator) | |
model = model.half() | |
model.eval() | |
# Inférence sur GPU | |
predictions = [] | |
with torch.no_grad(): | |
for batch in test_loader: | |
input_ids = batch['input_ids'].to(device) | |
attention_mask = batch['attention_mask'].to(device) | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask) | |
logits = outputs.logits | |
preds = torch.argmax(logits, dim=-1) | |
predictions.extend(preds.cpu().numpy()) # Remettre sur CPU pour stockage | |
# path_model = 'MatthiasPicard/checkpoint4200_batch16_modern_bert_valloss_0.79_0.74acc' | |
# path_tokenizer = "answerdotai/ModernBERT-base" | |
# model = AutoModelForSequenceClassification.from_pretrained(path_model) | |
# tokenizer = AutoTokenizer.from_pretrained(path_tokenizer) | |
# def preprocess_function(df): | |
# return tokenizer(df["quote"], truncation=True) | |
# tokenized_test = test_dataset.map(preprocess_function, batched=True) | |
# # training_args = torch.load("training_args.bin") | |
# # training_args.eval_strategy='no' | |
# model = model.half() | |
# model.eval() | |
# data_collator = DataCollatorWithPadding(tokenizer) | |
# trainer = Trainer( | |
# model=model, | |
# # args=training_args, | |
# tokenizer=tokenizer, | |
# data_collator=data_collator | |
# ) | |
# trainer.args.per_device_eval_batch_size = 16 | |
# preds = trainer.predict(tokenized_test) | |
# predictions = np.array([np.argmax(x) for x in preds[0]]) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |