Spaces:
Runtime error
Runtime error
File size: 9,424 Bytes
b1828a3 44f5cb7 b1828a3 4ba2008 b1828a3 44f5cb7 b1828a3 d2d20b7 44f5cb7 b1828a3 4ba2008 b1828a3 44f5cb7 4ba2008 44f5cb7 b1828a3 44f5cb7 b1828a3 44f5cb7 b1828a3 44f5cb7 b1828a3 44f5cb7 b1828a3 44f5cb7 b1828a3 44f5cb7 b1828a3 44f5cb7 b1828a3 44f5cb7 b1828a3 d2d20b7 44f5cb7 4ba2008 44f5cb7 b1828a3 d2d20b7 b1828a3 1bb7c1d b1828a3 f539e6d b1828a3 44f5cb7 b1828a3 1bb7c1d f539e6d b1828a3 d2d20b7 b1828a3 d2d20b7 b1828a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
import librosa
import numpy as np
import moviepy.editor as mpy
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline
# checkpoint = "openai/whisper-tiny"
# checkpoint = "openai/whisper-base"
checkpoint = "openai/whisper-small"
# We need to set alignment_heads on the model's generation_config (at least
# until the models have been updated on the hub).
# If you're going to use a different version of whisper, see the following
# for which values to use for alignment_heads:
# https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a
# whisper-tiny
# alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
# whisper-base
# alignment_heads = [[3, 1], [4, 2], [4, 3], [4, 7], [5, 1], [5, 2], [5, 4], [5, 6]]
# whisper-small
alignment_heads = [[5, 3], [5, 9], [8, 0], [8, 4], [8, 7], [8, 8], [9, 0], [9, 7], [9, 9], [10, 5]]
max_duration = 60 # seconds
fps = 25
video_width = 640
video_height = 480
margin_left = 20
margin_right = 20
margin_top = 20
line_height = 44
background_image = Image.open("background.png")
font = ImageFont.truetype("Lato-Regular.ttf", 40)
text_color = (255, 200, 200)
highlight_color = (255, 255, 255)
LANGUAGES = {
"en": "english",
"zh": "chinese",
"de": "german",
"es": "spanish",
"ru": "russian",
"ko": "korean",
"fr": "french",
"ja": "japanese",
"pt": "portuguese",
"tr": "turkish",
"pl": "polish",
"ca": "catalan",
"nl": "dutch",
"ar": "arabic",
"sv": "swedish",
"it": "italian",
"id": "indonesian",
"hi": "hindi",
"fi": "finnish",
"vi": "vietnamese",
"he": "hebrew",
"uk": "ukrainian",
"el": "greek",
"ms": "malay",
"cs": "czech",
"ro": "romanian",
"da": "danish",
"hu": "hungarian",
"ta": "tamil",
"no": "norwegian",
"th": "thai",
"ur": "urdu",
"hr": "croatian",
"bg": "bulgarian",
"lt": "lithuanian",
"la": "latin",
"mi": "maori",
"ml": "malayalam",
"cy": "welsh",
"sk": "slovak",
"te": "telugu",
"fa": "persian",
"lv": "latvian",
"bn": "bengali",
"sr": "serbian",
"az": "azerbaijani",
"sl": "slovenian",
"kn": "kannada",
"et": "estonian",
"mk": "macedonian",
"br": "breton",
"eu": "basque",
"is": "icelandic",
"hy": "armenian",
"ne": "nepali",
"mn": "mongolian",
"bs": "bosnian",
"kk": "kazakh",
"sq": "albanian",
"sw": "swahili",
"gl": "galician",
"mr": "marathi",
"pa": "punjabi",
"si": "sinhala",
"km": "khmer",
"sn": "shona",
"yo": "yoruba",
"so": "somali",
"af": "afrikaans",
"oc": "occitan",
"ka": "georgian",
"be": "belarusian",
"tg": "tajik",
"sd": "sindhi",
"gu": "gujarati",
"am": "amharic",
"yi": "yiddish",
"lo": "lao",
"uz": "uzbek",
"fo": "faroese",
"ht": "haitian creole",
"ps": "pashto",
"tk": "turkmen",
"nn": "nynorsk",
"mt": "maltese",
"sa": "sanskrit",
"lb": "luxembourgish",
"my": "myanmar",
"bo": "tibetan",
"tl": "tagalog",
"mg": "malagasy",
"as": "assamese",
"tt": "tatar",
"haw": "hawaiian",
"ln": "lingala",
"ha": "hausa",
"ba": "bashkir",
"jw": "javanese",
"su": "sundanese",
}
# language code lookup by name, with a few language aliases
TO_LANGUAGE_CODE = {
**{language: code for code, language in LANGUAGES.items()},
"burmese": "my",
"valencian": "ca",
"flemish": "nl",
"haitian": "ht",
"letzeburgesch": "lb",
"pushto": "ps",
"panjabi": "pa",
"moldavian": "ro",
"moldovan": "ro",
"sinhalese": "si",
"castilian": "es",
}
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
from transformers import (
AutomaticSpeechRecognitionPipeline,
WhisperForConditionalGeneration,
WhisperProcessor,
)
model = WhisperForConditionalGeneration.from_pretrained(checkpoint).to("cuda").half()
processor = WhisperProcessor.from_pretrained(checkpoint)
pipe = AutomaticSpeechRecognitionPipeline(
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
batch_size=8,
torch_dtype=torch.float16,
device="cuda:0"
)
else:
pipe = pipeline(model=checkpoint)
pipe.model.generation_config.alignment_heads = alignment_heads
chunks = []
start_chunk = 0
last_draws = None
last_image = None
def make_frame(t):
global chunks, start_chunk, last_draws, last_image
# TODO in the Henry V example, the word "desires" has an ending timestamp
# that's too far into the future, and so the word stays highlighted.
# Could fix this by finding the latest word that is active in the chunk
# and only highlight that one.
image = background_image.copy()
draw = ImageDraw.Draw(image)
# for debugging: draw frame time
#draw.text((20, 20), str(t), fill=text_color, font=font)
space_length = draw.textlength(" ", font)
x = margin_left
y = margin_top
# Create a list of drawing commands
draws = []
for i in range(start_chunk, len(chunks)):
chunk = chunks[i]
chunk_start = chunk["timestamp"][0]
chunk_end = chunk["timestamp"][1]
if chunk_start > t: break
if chunk_end is None: chunk_end = max_duration
word = chunk["text"]
word_length = draw.textlength(word + " ", font) - space_length
if x + word_length >= video_width - margin_right:
x = margin_left
y += line_height
# restart page when end is reached
if y >= margin_top + line_height * 7:
start_chunk = i
break
highlight = (chunk_start <= t < chunk_end)
draws.append([x, y, word, word_length, highlight])
x += word_length + space_length
# If the drawing commands didn't change, then reuse the last image,
# otherwise draw a new image
if draws != last_draws:
for x, y, word, word_length, highlight in draws:
if highlight:
color = highlight_color
draw.rectangle([x, y + line_height, x + word_length, y + line_height + 4], fill=color)
else:
color = text_color
draw.text((x, y), word, fill=color, font=font)
last_image = np.array(image)
last_draws = draws
return last_image
def predict(audio_path, language=None):
global chunks, start_chunk, last_draws, last_image
start_chunk = 0
last_draws = None
last_image = None
audio_data, sr = librosa.load(audio_path, mono=True)
duration = librosa.get_duration(y=audio_data, sr=sr)
duration = min(max_duration, duration)
audio_data = audio_data[:int(duration * sr)]
if language is not None:
pipe.model.config.forced_decoder_ids = (
pipe.tokenizer.get_decoder_prompt_ids(
language=language,
task="transcribe"
)
)
# Run Whisper to get word-level timestamps.
audio_inputs = librosa.resample(audio_data, orig_sr=sr, target_sr=pipe.feature_extractor.sampling_rate)
output = pipe(audio_inputs, chunk_length_s=30, stride_length_s=[4, 2], return_timestamps="word")
chunks = output["chunks"]
#print(chunks)
# Create the video.
clip = mpy.VideoClip(make_frame, duration=duration)
audio_clip = mpy.AudioFileClip(audio_path).set_duration(duration)
clip = clip.set_audio(audio_clip)
clip.write_videofile("my_video.mp4", fps=fps, codec="libx264", audio_codec="aac")
return "my_video.mp4"
title = "Word-level timestamps with Whisper"
description = """
This demo shows Whisper <b>word-level timestamps</b> in action using Hugging Face Transformers. It creates a video showing subtitled audio with the current word highlighted. It can even do music lyrics!
This demo uses the <b>openai/whisper-small</b> checkpoint.
Since it's only a demo, the output is limited to the first 60 seconds of audio.
To use this on longer audio, <a href="https://huggingface.co/spaces/Matthijs/whisper_word_timestamps/settings?duplicate=true">duplicate the space</a>
and in <b>app.py</b> change the value of `max_duration`.
"""
article = """
<div style='margin:20px auto;'>
<p>Credits:<p>
<ul>
<li>Shakespeare's "Henry V" speech from <a href="https://freesound.org/people/acclivity/sounds/24096/">acclivity</a> (CC BY-NC 4.0 license)
<li>"Here's to the Crazy Ones" speech by Steve Jobs</li>
<li>"Stupid People" comedy routine by Bill Engvall</li>
<li>"BeOS, It's The OS" song by The Cotton Squares</li>
<li>Lato font by Łukasz Dziedzic (licensed under Open Font License)</li>
<li>Whisper model by OpenAI</li>
</ul>
</div>
"""
examples = [
["examples/steve_jobs_crazy_ones.mp3", "english"],
["examples/henry5.wav", "english"],
["examples/stupid_people.mp3", "english"],
["examples/beos_song.mp3", "english"],
["examples/johan_cruijff.mp3", "dutch"],
]
gr.Interface(
fn=predict,
inputs=[
gr.Audio(label="Upload Audio", source="upload", type="filepath"),
gr.Dropdown(label="Language", choices=sorted(list(TO_LANGUAGE_CODE.keys()))),
],
outputs=[
gr.Video(label="Output Video"),
],
title=title,
description=description,
article=article,
examples=examples,
).launch()
|