File size: 4,130 Bytes
0b8e4b8
 
 
 
 
 
 
 
f0dc35b
0b8e4b8
 
 
 
 
 
 
 
 
 
11a69e0
0b8e4b8
11a69e0
0b8e4b8
 
 
 
 
 
11a69e0
 
 
 
0b8e4b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from gradio_pdf import PDF
from qdrant_client import models, QdrantClient
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from transformers import AutoTokenizer
from langchain.vectorstores import Qdrant
from qdrant_client.http import models
from ctransformers import AutoModelForCausalLM

# Loading the embedding model
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
print("Embedding model loaded...")

# Loading the LLM
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
'''
llm = AutoModelForCausalLM.from_pretrained(
    "refuelai/Llama-3-Refueled",
    model_file="llama-2-7b-chat.Q3_K_S.gguf",
    model_type="llama",
    temperature=0.2,
    repetition_penalty=1.5,
    max_new_tokens=300,
)
'''
model_id = "refuelai/Llama-3-Refueled"
tokenizer = AutoTokenizer.from_pretrained(model_id)
llm = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")

print("LLM loaded...")

def chat(files, question):
    def get_chunks(text):
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=250,
            chunk_overlap=50,
            length_function=len,
        )
        chunks = text_splitter.split_text(text)
        return chunks

    all_chunks = []
    
    for file in files:
        pdf_path = file
        reader = PdfReader(pdf_path)
        text = ""
        num_of_pages = len(reader.pages)

        for page in range(num_of_pages):
            current_page = reader.pages[page]
            text += current_page.extract_text()

        chunks = get_chunks(text)
        all_chunks.extend(chunks)
    
    print(f"Total chunks: {len(all_chunks)}")
    print("Chunks are ready...")

    client = QdrantClient(path="./db")
    print("DB created...")

    client.recreate_collection(
        collection_name="my_facts",
        vectors_config=models.VectorParams(
            size=encoder.get_sentence_embedding_dimension(),
            distance=models.Distance.COSINE,
        ),
    )

    print("Collection created...")

    li = list(range(len(all_chunks)))
    dic = dict(zip(li, all_chunks))

    client.upload_records(
        collection_name="my_facts",
        records=[
            models.Record(
                id=idx,
                vector=encoder.encode(dic[idx]).tolist(),
                payload={f"chunk_{idx}": dic[idx]}
            ) for idx in dic.keys()
        ],
    )

    print("Records uploaded...")

    hits = client.search(
        collection_name="my_facts",
        query_vector=encoder.encode(question).tolist(),
        limit=3
    )
    context = []
    for hit in hits:
        context.append(list(hit.payload.values())[0])
    
    context = " ".join(context)

    system_prompt = """You are a helpful co-worker, you will use the provided context to answer user questions.
    Read the given context before answering questions and think step by step. If you cannot answer a user question based on 
    the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""

    B_INST, E_INST = "[INST]", "[/INST]"
    B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

    SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS

    instruction = f""" 
    Context: {context}
    User: {question}"""

    prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
    print(prompt_template)
    result = llm(prompt_template)
    return result

screen = gr.Interface(
    fn=chat,
    inputs=[gr.File(label="Upload PDFs", file_count="multiple"), gr.Textbox(lines=10, placeholder="Enter your question here ๐Ÿ‘‰")],
    outputs=gr.Textbox(lines=10, placeholder="Your answer will be here soon ๐Ÿš€"),
    title="Q&A with PDFs ๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ป๐Ÿ““โœ๐Ÿป๐Ÿ’ก",
    description="This app facilitates a conversation with PDFs uploaded๐Ÿ’ก",
    theme="soft",
)

screen.launch()