ragavsachdeva commited on
Commit
8cbc30d
1 Parent(s): e3a827c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -35
app.py CHANGED
@@ -83,24 +83,12 @@ input_character_character_matching_threshold = st.sidebar.slider('Character-char
83
  input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)
84
 
85
 
86
- if path_to_image is None:
87
- path_to_image = "https://i.imgur.com/pZqPlSR.jpeg"
88
-
89
- image = read_image_as_np_array(path_to_image)
90
-
91
- st.markdown("**Prediction**")
92
- if generate_detections_and_associations or generate_transcript:
93
- result = predict_detections_and_associations(
94
- path_to_image,
95
- input_character_detection_threshold,
96
- input_panel_detection_threshold,
97
- input_text_detection_threshold,
98
- input_character_character_matching_threshold,
99
- input_text_character_matching_threshold,
100
- )
101
-
102
- if generate_transcript:
103
- ocr_results = predict_ocr(
104
  path_to_image,
105
  input_character_detection_threshold,
106
  input_panel_detection_threshold,
@@ -108,21 +96,31 @@ if generate_transcript:
108
  input_character_character_matching_threshold,
109
  input_text_character_matching_threshold,
110
  )
111
-
112
- if generate_detections_and_associations and generate_transcript:
113
- col1, col2 = st.columns(2)
114
- output = model.visualise_single_image_prediction(image, result)
115
- col1.image(output)
116
- text_bboxes_for_all_images = [result["texts"]]
117
- ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
118
- transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
119
- col2.text(transcript)
120
-
121
- elif generate_detections_and_associations:
122
- output = model.visualise_single_image_prediction(image, result)
123
- st.image(output)
124
-
125
- elif generate_transcript:
126
- transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
127
- st.text(transcript)
 
 
 
 
 
 
 
 
 
 
128
 
 
83
  input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)
84
 
85
 
86
+ if path_to_image is not None:
87
+ image = read_image_as_np_array(path_to_image)
88
+
89
+ st.markdown("**Prediction**")
90
+ if generate_detections_and_associations or generate_transcript:
91
+ result = predict_detections_and_associations(
 
 
 
 
 
 
 
 
 
 
 
 
92
  path_to_image,
93
  input_character_detection_threshold,
94
  input_panel_detection_threshold,
 
96
  input_character_character_matching_threshold,
97
  input_text_character_matching_threshold,
98
  )
99
+
100
+ if generate_transcript:
101
+ ocr_results = predict_ocr(
102
+ path_to_image,
103
+ input_character_detection_threshold,
104
+ input_panel_detection_threshold,
105
+ input_text_detection_threshold,
106
+ input_character_character_matching_threshold,
107
+ input_text_character_matching_threshold,
108
+ )
109
+
110
+ if generate_detections_and_associations and generate_transcript:
111
+ col1, col2 = st.columns(2)
112
+ output = model.visualise_single_image_prediction(image, result)
113
+ col1.image(output)
114
+ text_bboxes_for_all_images = [result["texts"]]
115
+ ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
116
+ transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
117
+ col2.text(transcript)
118
+
119
+ elif generate_detections_and_associations:
120
+ output = model.visualise_single_image_prediction(image, result)
121
+ st.image(output)
122
+
123
+ elif generate_transcript:
124
+ transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
125
+ st.text(transcript)
126