Spaces:
Running
on
Zero
Running
on
Zero
import time | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from transformers import TextIteratorStreamer | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">microsoft/Phi-3-vision-128k-instruct</h1> | |
</div> | |
""" | |
user_prompt = '<|user|>\n' | |
assistant_prompt = '<|assistant|>\n' | |
prompt_suffix = "<|end|>\n" | |
model_id = "microsoft/Phi-3-vision-128k-instruct" | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
) | |
model.to("cuda:0") | |
def bot_streaming(message, history): | |
print(message) | |
if message["files"]: | |
# message["files"][-1] is a Dict or just a string | |
if type(message["files"][-1]) == dict: | |
image = message["files"][-1]["path"] | |
else: | |
image = message["files"][-1] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
# kept inside tuples, take the last one | |
for hist in history: | |
if type(hist[0]) == tuple: | |
image = hist[0][0] | |
try: | |
if image is None: | |
# Handle the case where image is None | |
gr.Error("You need to upload an image for Phi-3-vision to work.") | |
except NameError: | |
# Handle the case where 'image' is not defined at all | |
gr.Error("You need to upload an image for Phi-3-vision to work.") | |
prompt = f"{message['text']}<|image_1|>\nCan you convert the table to markdown format?{prompt_suffix}{assistant_prompt}" | |
# print(f"prompt: {prompt}") | |
image = Image.open(image) | |
inputs = processor(prompt, [image], return_tensors='pt').to(0, torch.float16) | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
time.sleep(0.5) | |
for new_text in streamer: | |
# find <|eot_id|> and remove it from the new_text | |
if "<|eot_id|>" in new_text: | |
new_text = new_text.split("<|eot_id|>")[0] | |
buffer += new_text | |
generated_text_without_prompt = buffer | |
# print(generated_text_without_prompt) | |
time.sleep(0.06) | |
# print(f"new_text: {generated_text_without_prompt}") | |
yield generated_text_without_prompt | |
chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1) | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", | |
show_label=False) | |
with gr.Blocks(fill_height=True, ) as demo: | |
gr.ChatInterface( | |
fn=bot_streaming, | |
title="Phi-3 Vision 128k Instruct", | |
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files": ["./baklava.png"]}], | |
description="Try [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", | |
stop_btn="Stop Generation", | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
) | |
demo.queue(api_open=False) | |
demo.launch(show_api=False, share=False) | |