Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,049 Bytes
f04732f d02b0d1 bdaba80 d02b0d1 f04732f 8ce485a f04732f 50def22 d02b0d1 6c67d55 d02b0d1 6c67d55 d02b0d1 6c67d55 f04732f 340a6dd 70f2766 1117f0e 5699a69 1117f0e 70f2766 5699a69 70f2766 f04732f 50def22 f04732f cdaf5e3 50def22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, TextIteratorStreamer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
import requests
CSS ="""
#component-3 { height: 400px; }
"""
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model.to("cuda:0")
model.generation_config.eos_token_id = 128009
@spaces.GPU
def bot_streaming(message, history):
print(message)
if message["files"]:
image = message["files"][-1]["path"]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt=f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
text_prompt =f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
print(f"text_prompt: {text_prompt}")
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer[len(text_prompt):]
time.sleep(0.04)
yield generated_text_without_prompt
demo = gr.ChatInterface(fn=bot_streaming, css=CSS, fill_height=True, title="LLaVA Llama-3-8B", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
{"text": "How to make this pastry?", "files":["./baklava.png"]}],
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation", multimodal=True)
demo.queue(default_concurrency_limit=20, max_size=20, api_open=False)
demo.launch(show_api=False, share=False) |