File size: 2,818 Bytes
f04732f
d02b0d1
 
bdaba80
d02b0d1
f04732f
 
 
 
 
 
8ce485a
f04732f
cf67b8a
 
 
 
 
 
d02b0d1
 
 
 
 
 
 
 
 
 
f04732f
be7bc1f
f04732f
 
 
 
 
 
 
 
 
 
 
 
340a6dd
 
 
d02b0d1
bdaba80
bec5a84
 
f04732f
 
cf67b8a
f04732f
 
 
 
 
d02b0d1
bdaba80
f04732f
 
 
 
 
 
 
 
 
 
 
be7bc1f
 
f04732f
be7bc1f
 
f04732f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr

from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, TextIteratorStreamer

from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import requests

CSS ="""
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; }
"""

model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"

processor = AutoProcessor.from_pretrained(model_id)

model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
)

model.to("cuda:0")
model.generation_config.eos_token_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")

@spaces.GPU
def bot_streaming(message, history):
  print(message)
  if message["files"]:
    image = message["files"][-1]["path"]
  else:
    # if there's no image uploaded for this turn, look for images in the past turns
    # kept inside tuples, take the last one
    for hist in history:
      if type(hist[0])==tuple:
        image = hist[0][0]

  if image is None:
      gr.Error("You need to upload an image for LLaVA to work.")
  prompt=f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
  print(f"prompt: {prompt}")
  image = Image.open(image)
  inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)

  streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
  generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
  generated_text = ""

  thread = Thread(target=model.generate, kwargs=generation_kwargs)
  thread.start()

  text_prompt =f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
  print(f"text_prompt: {text_prompt}")

  buffer = ""
  for new_text in streamer:
    
    buffer += new_text
    
    generated_text_without_prompt = buffer[len(text_prompt):]
    time.sleep(0.04)
    yield generated_text_without_prompt


with gr.Blocks(css=CSS) as demo:
    chatbot = gr.ChatInterface(fn=bot_streaming, title="LLaVA Llama-3-8B", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
                                                                      {"text": "How to make this pastry?", "files":["./baklava.png"]}], 
                            description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
                            stop_btn="Stop Generation", multimodal=True)
demo.launch(debug=True)