Spaces:
Running
on
Zero
Running
on
Zero
MaziyarPanahi
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
5 |
|
6 |
from threading import Thread
|
7 |
import re
|
@@ -38,6 +38,7 @@ def bot_streaming(message, history):
|
|
38 |
if image is None:
|
39 |
gr.Error("You need to upload an image for LLaVA to work.")
|
40 |
prompt=f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
|
41 |
image = Image.open(image).convert("RGB")
|
42 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
43 |
|
@@ -49,7 +50,7 @@ def bot_streaming(message, history):
|
|
49 |
thread.start()
|
50 |
|
51 |
text_prompt =f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
52 |
-
|
53 |
|
54 |
buffer = ""
|
55 |
for new_text in streamer:
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, TextIteratorStreamer
|
5 |
|
6 |
from threading import Thread
|
7 |
import re
|
|
|
38 |
if image is None:
|
39 |
gr.Error("You need to upload an image for LLaVA to work.")
|
40 |
prompt=f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
41 |
+
print(f"prompt: {prompt}")
|
42 |
image = Image.open(image).convert("RGB")
|
43 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
44 |
|
|
|
50 |
thread.start()
|
51 |
|
52 |
text_prompt =f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
53 |
+
print(f"text_prompt: {text_prompt}")
|
54 |
|
55 |
buffer = ""
|
56 |
for new_text in streamer:
|