File size: 11,963 Bytes
f949b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
from copy import deepcopy
from einops import repeat
import math


class FrameConditioning():
    def __init__(self,
                 add_frame_to_input: bool = False,
                 add_frame_to_layers: bool = False,
                 fill_zero: bool = False,
                 randomize_mask: bool = False,
                 concatenate_mask: bool = False,
                 injection_probability: float = 0.9,
                 ) -> None:
        self.use = None
        self.add_frame_to_input = add_frame_to_input
        self.add_frame_to_layers = add_frame_to_layers
        self.fill_zero = fill_zero
        self.randomize_mask = randomize_mask
        self.concatenate_mask = concatenate_mask
        self.injection_probability = injection_probability
        self.add_frame_to_input or self.add_frame_to_layers

        assert not add_frame_to_layers or not add_frame_to_input

    def set_random_mask(self, random_mask: bool):
        frame_conditioning = deepcopy(self)
        frame_conditioning.randomize_mask = random_mask
        return frame_conditioning

    @property
    def use(self):
        return self.add_frame_to_input or self.add_frame_to_layers

    @use.setter
    def use(self, value):
        if value is not None:
            raise NotImplementedError("Direct access not allowed")

    def attach_video_frames(self, pl_module, z_0: torch.Tensor = None, batch: torch.Tensor = None, random_mask: bool = False):
        assert self.fill_zero, "Not filling with zero not implemented yet"
        n_frames_inference = self.inference_params.video_length
        with torch.no_grad():
            if z_0 is None:
                assert batch is not None
                z_0 = pl_module.encode_frame(batch)
            assert n_frames_inference == z_0.shape[1], "For frame injection, the number of frames sampled by the dataloader must match the number of frames used for video generation"
            shape = list(z_0.shape)

            shape[1] = pl_module.inference_params.video_length
            M = torch.zeros(shape, dtype=z_0.dtype,
                            device=pl_module.device)  # [B F C W H]
            bsz = z_0.shape[0]
            if random_mask:
                p_inject_frame = self.injection_probability
                use_masks = torch.bernoulli(
                    torch.tensor(p_inject_frame).repeat(bsz)).long()
                keep_frame_idx = torch.randint(
                    0, n_frames_inference, (bsz,), device=pl_module.device).long()
            else:
                use_masks = torch.ones((bsz,), device=pl_module.device).long()
                # keep only first frame
                keep_frame_idx = 0 * use_masks
            frame_idx = []

            for batch_idx, (keep_frame, use_mask) in enumerate(zip(keep_frame_idx, use_masks)):
                M[batch_idx, keep_frame] = use_mask
                frame_idx.append(keep_frame if use_mask == 1 else -1)

            x0 = z_0*M
            if self.concatenate_mask:
                # flatten mask
                M = M[:, :, 0, None]
                x0 = torch.cat([x0, M], dim=2)
            if getattr(pl_module.opt_params.noise_decomposition, "use", False) and random_mask:
                assert x0.shape[0] == 1, "randomizing frame injection with noise decomposition not implemented for batch size >1"
        return x0, frame_idx


class NoiseDecomposition():

    def __init__(self,
                 use: bool = False,
                 random_frame: bool = False,
                 lambda_f: float = 0.5,
                 use_base_model: bool = True,
                 ):
        self.use = use
        self.random_frame = random_frame
        self.lambda_f = lambda_f
        self.use_base_model = use_base_model

    def get_loss(self, x0, unet_base, unet, noise_scheduler, frame_idx, z_t_base, timesteps, encoder_hidden_states, base_noise, z_t_residual, composed_noise):
        if x0 is not None:
            # x0.shape = [B,F,C,W,H], if extrapolation_params.fill_zero=true, only one frame per batch non-zero
            assert not self.random_frame

            # TODO add x0 injection
            x0_base = []
            for batch_idx, frame in enumerate(frame_idx):
                x0_base.append(x0[batch_idx, frame, None, None])

            x0_base = torch.cat(x0_base, dim=0)
            x0_residual = repeat(
                x0[:, 0], "B C W H -> B F C W H", F=x0.shape[1]-1)
        else:
            x0_residual = None

        if self.use_base_model:
            base_pred = unet_base(z_t_base, timesteps,
                                  encoder_hidden_states, x0=x0_base).sample
        else:
            base_pred = base_noise

        timesteps_alphas = [
            noise_scheduler.alphas_cumprod[t.cpu()] for t in timesteps]
        timesteps_alphas = torch.stack(
            timesteps_alphas).to(base_pred.device)
        timesteps_alphas = repeat(timesteps_alphas, "B -> B F C W H",
                                  F=base_pred.shape[1], C=base_pred.shape[2], W=base_pred.shape[3], H=base_pred.shape[4])
        base_correction = math.sqrt(
            lambda_f) * torch.sqrt(1-timesteps_alphas) * base_pred

        z_t_residual_dash = z_t_residual - base_correction

        residual_pred = unet(
            z_t_residual_dash, timesteps, encoder_hidden_states, x0=x0_residual).sample
        composed_pred = math.sqrt(
            lambda_f)*base_pred.detach() + math.sqrt(1-lambda_f) * residual_pred

        loss_residual = torch.nn.functional.mse_loss(
            composed_noise.float(), composed_pred.float(), reduction=reduction)
        if self.use_base_model:
            loss_base = torch.nn.functional.mse_loss(
                base_noise.float(), base_pred.float(), reduction=reduction)
            loss = loss_residual+loss_base
        else:
            loss = loss_residual
        return loss

    def add_noise(self, z_base, base_noise, z_residual, composed_noise, noise_scheduler, timesteps):
        z_t_base = noise_scheduler.add_noise(
            z_base, base_noise, timesteps)
        z_t_residual = noise_scheduler.add_noise(
            z_residual, composed_noise, timesteps)
        return z_t_base, z_t_residual

    def split_latent_into_base_residual(self, z_0, pl_module, noise_generator):
        if self.random_frame:
            raise NotImplementedError("Must be synced with x0 mask!")
            fr_select = torch.randint(
                0, z_0.shape[1], (bsz,), device=pl_module.device).long()
            z_base = z_0[:, fr_Select, None]
            fr_residual = [fr for fr in range(
                z_0.shape[1]) if fr != fr_select]
            z_residual = z_0[:, fr_residual, None]
        else:
            if not pl_module.unet_params.frame_conditioning.randomize_mask:
                z_base = z_0[:, 0, None]
                z_residual = z_0[:, 1:]
            else:
                z_base = []
                for batch_idx, frame_at_batch in enumerate(frame_idx):
                    z_base.append(
                        z_0[batch_idx, frame_at_batch, None, None])
                z_base = torch.cat(z_base, dim=0)
            # z_residual = z_0[[:, 1:]
                z_residual = []

                for batch_idx, frame_idx_batch in enumerate(frame_idx):
                    z_residual_batch = []
                    for frame in range(z_0.shape[1]):
                        if frame_idx_batch != frame:
                            z_residual_batch.append(
                                z_0[batch_idx, frame, None, None])
                    z_residual_batch = torch.cat(
                        z_residual_batch, dim=1)
                    z_residual.append(z_residual_batch)
                z_residual = torch.cat(z_residual, dim=0)
        base_noise = noise_generator.sample_noise(z_base)  # b_t
        residual_noise = noise_generator.sample_noise(z_residual)  # r^f_t
        lambda_f = self.lambda_f
        composed_noise = math.sqrt(
            lambda_f) * base_noise + math.sqrt(1-lambda_f) * residual_noise  # dimension issue?

        return z_base, base_noise, z_residual, composed_noise


class NoiseGenerator():

    def __init__(self, mode="vanilla") -> None:
        self.mode = mode

    def set_seed(self, seed: int):
        self.seed = seed

    def reset_seed(self, seed: int):
        pass

    def sample_noise(self, z_0: torch.tensor = None, shape=None, device=None, dtype=None, generator=None):

        assert (z_0 is not None) != (
            shape is not None), f"either z_0 must be None, or shape must be None. Both provided."
        kwargs = {}

        if z_0 is None:
            if device is not None:
                kwargs["device"] = device
            if dtype is not None:
                kwargs["dtype"] = dtype

        else:
            kwargs["device"] = z_0.device
            kwargs["dtype"] = z_0.dtype
            shape = z_0.shape

        if generator is not None:
            kwargs["generator"] = generator

        B, F, C, W, H = shape

        if self.mode == "vanilla":
            noise = torch.randn(
                shape, **kwargs)
        elif self.mode == "free_noise":
            noise = torch.randn(shape, **kwargs)
            if noise.shape[1] > 4:
                # HARD CODED
                noise = noise[:, :8]
                noise = torch.cat(
                    [noise, noise[:, torch.randperm(noise.shape[1])]], dim=1)
            elif noise.shape[2] > 4:
                noise = noise[:, :, :8]
                noise = torch.cat(
                    [noise, noise[:, :, torch.randperm(noise.shape[2])]], dim=2)
            else:
                raise NotImplementedError(
                    f"Shape of noise vector not as expected {noise.shape}")
        elif self.mode == "equal":
            shape = list(shape)
            shape[1] = 1
            noise_init = torch.randn(
                shape, **kwargs)
            shape[1] = F
            noise = torch.zeros(
                shape, device=noise_init.device, dtype=noise_init.dtype)
            for fr in range(F):
                noise[:, fr] = noise_init[:, 0]
        elif self.mode == "fusion":
            shape = list(shape)
            shape[1] = 1
            noise_init = torch.randn(
                shape, **kwargs)
            noises = []
            noises.append(noise_init)
            for fr in range(F-1):

                shift = 2*(fr+1)
                local_copy = noise_init
                shifted_noise = torch.cat(
                    [local_copy[:, :, :, shift:, :], local_copy[:, :, :, :shift, :]], dim=3)
                noises.append(math.sqrt(0.2)*shifted_noise +
                              math.sqrt(1-0.2)*torch.rand(shape, **kwargs))
            noise = torch.cat(noises, dim=1)

        elif self.mode == "motion_dynamics" or self.mode == "equal_noise_per_sequence":

            shape = list(shape)
            normal_frames = 1
            shape[1] = normal_frames
            init_noise = torch.randn(
                shape, **kwargs)
            noises = []
            noises.append(init_noise)
            init_noise = init_noise[:, -1, None]
            print(f"UPDATE with noise = {init_noise.shape}")

            if self.mode == "motion_dynamics":
                for fr in range(F-normal_frames):

                    shift = 2*(fr+1)
                    print(fr, shift)
                    local_copy = init_noise
                    shifted_noise = torch.cat(
                        [local_copy[:, :, :, shift:, :], local_copy[:, :, :, :shift, :]], dim=3)
                    noises.append(shifted_noise)
            elif self.mode == "equal_noise_per_sequence":
                for fr in range(F-1):
                    noises.append(init_noise)
            else:
                raise NotImplementedError()
            # noises[0] = noises[0] * 0
            noise = torch.cat(noises, dim=1)
            print(noise.shape)

        return noise