Spaces:
Runtime error
Runtime error
remove open_clip from FrozenOpenCLIPImageEmbedder
Browse files
t2v_enhanced/model/diffusers_conditional/models/controlnet/image_embedder.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import math
|
2 |
from typing import Any, Mapping
|
3 |
import torch
|
|
|
4 |
import torch.nn as nn
|
5 |
import kornia
|
6 |
-
|
7 |
-
from transformers import
|
8 |
from transformers.models.bit.image_processing_bit import BitImageProcessor
|
9 |
from einops import rearrange, repeat
|
10 |
# FFN
|
@@ -72,13 +73,16 @@ class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
|
72 |
output_tokens=False,
|
73 |
):
|
74 |
super().__init__()
|
75 |
-
model, _, _ = create_model_and_transforms(
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
80 |
-
del model.transformer
|
81 |
-
self.model = model
|
|
|
|
|
|
|
82 |
self.max_crops = num_image_crops
|
83 |
self.pad_to_max_len = self.max_crops > 0
|
84 |
self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len)
|
@@ -98,7 +102,7 @@ class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
|
98 |
self.ucg_rate = ucg_rate
|
99 |
self.unsqueeze_dim = unsqueeze_dim
|
100 |
self.stored_batch = None
|
101 |
-
self.model.visual.output_tokens = output_tokens
|
102 |
self.output_tokens = output_tokens
|
103 |
|
104 |
def preprocess(self, x):
|
@@ -116,9 +120,10 @@ class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
|
116 |
return x
|
117 |
|
118 |
def freeze(self):
|
119 |
-
self.model = self.model.eval()
|
120 |
for param in self.parameters():
|
121 |
param.requires_grad = False
|
|
|
122 |
|
123 |
def forward(self, image, no_dropout=False):
|
124 |
z = self.encode_with_vision_transformer(image)
|
@@ -174,38 +179,42 @@ class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
|
174 |
return z
|
175 |
|
176 |
def encode_with_vision_transformer(self, img):
|
177 |
-
# if self.max_crops > 0:
|
178 |
-
# img = self.preprocess_by_cropping(img)
|
179 |
-
if img.dim() == 5:
|
180 |
-
assert self.max_crops == img.shape[1]
|
181 |
-
img = rearrange(img, "b n c h w -> (b n) c h w")
|
182 |
-
img = self.preprocess(img)
|
183 |
-
if not self.output_tokens:
|
184 |
-
assert not self.model.visual.output_tokens
|
185 |
-
x = self.model.visual(img)
|
186 |
-
tokens = None
|
187 |
-
else:
|
188 |
-
assert self.model.visual.output_tokens
|
189 |
-
x, tokens = self.model.visual(img)
|
190 |
if self.max_crops > 0:
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
def encode(self, text):
|
211 |
return self(text)
|
|
|
1 |
import math
|
2 |
from typing import Any, Mapping
|
3 |
import torch
|
4 |
+
from torchvision.transforms.functional import to_pil_image
|
5 |
import torch.nn as nn
|
6 |
import kornia
|
7 |
+
# import open_clip
|
8 |
+
from transformers import CLIPVisionModelWithProjection, AutoProcessor
|
9 |
from transformers.models.bit.image_processing_bit import BitImageProcessor
|
10 |
from einops import rearrange, repeat
|
11 |
# FFN
|
|
|
73 |
output_tokens=False,
|
74 |
):
|
75 |
super().__init__()
|
76 |
+
# model, _, _ = open_clip.create_model_and_transforms(
|
77 |
+
# arch,
|
78 |
+
# device=torch.device("cpu"),
|
79 |
+
# pretrained=version,
|
80 |
+
# )
|
81 |
+
# del model.transformer
|
82 |
+
# self.model = model
|
83 |
+
self.model_t = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
84 |
+
self.processor = AutoProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
85 |
+
|
86 |
self.max_crops = num_image_crops
|
87 |
self.pad_to_max_len = self.max_crops > 0
|
88 |
self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len)
|
|
|
102 |
self.ucg_rate = ucg_rate
|
103 |
self.unsqueeze_dim = unsqueeze_dim
|
104 |
self.stored_batch = None
|
105 |
+
# self.model.visual.output_tokens = output_tokens
|
106 |
self.output_tokens = output_tokens
|
107 |
|
108 |
def preprocess(self, x):
|
|
|
120 |
return x
|
121 |
|
122 |
def freeze(self):
|
123 |
+
# self.model = self.model.eval()
|
124 |
for param in self.parameters():
|
125 |
param.requires_grad = False
|
126 |
+
self.model_t = self.model_t.eval()
|
127 |
|
128 |
def forward(self, image, no_dropout=False):
|
129 |
z = self.encode_with_vision_transformer(image)
|
|
|
179 |
return z
|
180 |
|
181 |
def encode_with_vision_transformer(self, img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
if self.max_crops > 0:
|
183 |
+
img = self.preprocess_by_cropping(img)
|
184 |
+
pil_img = to_pil_image(img[0]*0.5 + 0.5)
|
185 |
+
inputs = self.processor(images=pil_img, return_tensors="pt").to("cuda")
|
186 |
+
outputs = self.model_t(**inputs)
|
187 |
+
return outputs.image_embeds
|
188 |
+
# if img.dim() == 5:
|
189 |
+
# assert self.max_crops == img.shape[1]
|
190 |
+
# img = rearrange(img, "b n c h w -> (b n) c h w")
|
191 |
+
# img = self.preprocess(img)
|
192 |
+
# if not self.output_tokens:
|
193 |
+
# assert not self.model.visual.output_tokens
|
194 |
+
# x = self.model.visual(img)
|
195 |
+
# tokens = None
|
196 |
+
# else:
|
197 |
+
# assert self.model.visual.output_tokens
|
198 |
+
# x, tokens = self.model.visual(img)
|
199 |
+
# if self.max_crops > 0:
|
200 |
+
# x = rearrange(x, "(b n) d -> b n d", n=self.max_crops)
|
201 |
+
# # drop out between 0 and all along the sequence axis
|
202 |
+
# x = (
|
203 |
+
# torch.bernoulli(
|
204 |
+
# (1.0 - self.ucg_rate)
|
205 |
+
# * torch.ones(x.shape[0], x.shape[1], 1, device=x.device)
|
206 |
+
# )
|
207 |
+
# * x
|
208 |
+
# )
|
209 |
+
# if tokens is not None:
|
210 |
+
# tokens = rearrange(tokens, "(b n) t d -> b t (n d)", n=self.max_crops)
|
211 |
+
# print(
|
212 |
+
# f"You are running very experimental token-concat in {self.__class__.__name__}. "
|
213 |
+
# f"Check what you are doing, and then remove this message."
|
214 |
+
# )
|
215 |
+
# if self.output_tokens:
|
216 |
+
# return x, tokens
|
217 |
+
# return x
|
218 |
|
219 |
def encode(self, text):
|
220 |
return self(text)
|