Spaces:
Runtime error
Runtime error
Med Tiouti
commited on
Commit
•
5491a72
1
Parent(s):
1a66660
Test8326832
Browse files- .gitattributes +1 -0
- README.md +3 -0
- app.py +162 -0
- faiss_index_shl/index.faiss +3 -0
- faiss_index_shl/index.pkl +3 -0
- requirements.txt +9 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
faiss_index_shl/index.faiss filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -7,6 +7,9 @@ sdk: gradio
|
|
7 |
sdk_version: 4.14.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
sdk_version: 4.14.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
models:
|
11 |
+
- sentence-transformers/all-MiniLM-L6-v2
|
12 |
+
- daryl149/llama-2-7b-chat-hf
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# retrievers
|
3 |
+
from langchain.chains import RetrievalQA
|
4 |
+
|
5 |
+
import textwrap
|
6 |
+
import time
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import transformers
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
11 |
+
|
12 |
+
# models
|
13 |
+
from langchain.llms import HuggingFacePipeline
|
14 |
+
from InstructorEmbedding import INSTRUCTOR
|
15 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
16 |
+
|
17 |
+
# prompts
|
18 |
+
from langchain import PromptTemplate, LLMChain
|
19 |
+
|
20 |
+
# vector stores
|
21 |
+
from langchain.vectorstores import FAISS
|
22 |
+
|
23 |
+
|
24 |
+
def get_model(model_name):
|
25 |
+
model_repo = 'daryl149/llama-2-7b-chat-hf'
|
26 |
+
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
|
28 |
+
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
model_repo,
|
31 |
+
load_in_4bit=True,
|
32 |
+
device_map='auto',
|
33 |
+
torch_dtype=torch.float16,
|
34 |
+
low_cpu_mem_usage=True,
|
35 |
+
trust_remote_code=True
|
36 |
+
)
|
37 |
+
max_len = 2048
|
38 |
+
|
39 |
+
return tokenizer,model,max_len
|
40 |
+
|
41 |
+
|
42 |
+
tokenizer, model, max_len = get_model("llama2-13b")
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
temperature = 0,
|
47 |
+
top_p = 0.95,
|
48 |
+
repetition_penalty = 1.15
|
49 |
+
|
50 |
+
pipe = pipeline(
|
51 |
+
task = "text-generation",
|
52 |
+
model = model,
|
53 |
+
tokenizer = tokenizer,
|
54 |
+
pad_token_id = tokenizer.eos_token_id,
|
55 |
+
max_length = max_len,
|
56 |
+
temperature = temperature,
|
57 |
+
top_p = top_p,
|
58 |
+
repetition_penalty = repetition_penalty
|
59 |
+
)
|
60 |
+
|
61 |
+
llm = HuggingFacePipeline(pipeline = pipe)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
# similar passages
|
67 |
+
k = 3
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
embeddings_shl_path ="/content/faiss_index_shl"
|
72 |
+
embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'
|
73 |
+
### download embeddings model
|
74 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
75 |
+
model_name = embeddings_model_repo,
|
76 |
+
model_kwargs = {"device": "cuda"}
|
77 |
+
)
|
78 |
+
|
79 |
+
### load vector DB embeddings
|
80 |
+
vectordb = FAISS.load_local(
|
81 |
+
embeddings_shl_path,
|
82 |
+
embeddings
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
prompt_template = """
|
87 |
+
Don't try to make up an answer, if you don't know just say that you don't know.
|
88 |
+
Answer in the same language the question was asked.
|
89 |
+
Don't mention in the answer the speaker just give the answer directly.
|
90 |
+
Use only the following pieces of context to answer the question at the end.
|
91 |
+
|
92 |
+
{context}
|
93 |
+
|
94 |
+
Question: {question}
|
95 |
+
Answer:"""
|
96 |
+
|
97 |
+
|
98 |
+
PROMPT = PromptTemplate(
|
99 |
+
template = prompt_template,
|
100 |
+
input_variables = ["context", "question"]
|
101 |
+
)
|
102 |
+
|
103 |
+
retriever = vectordb.as_retriever(search_kwargs = {"k": 3, "search_type" : "similarity"})
|
104 |
+
|
105 |
+
qa_chain = RetrievalQA.from_chain_type(
|
106 |
+
llm = llm,
|
107 |
+
chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
|
108 |
+
retriever = retriever,
|
109 |
+
chain_type_kwargs = {"prompt": PROMPT},
|
110 |
+
return_source_documents = True,
|
111 |
+
verbose = False
|
112 |
+
)
|
113 |
+
|
114 |
+
def wrap_text_preserve_newlines(text, width=700):
|
115 |
+
# Split the input text into lines based on newline characters
|
116 |
+
lines = text.split('\n')
|
117 |
+
|
118 |
+
# Wrap each line individually
|
119 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
120 |
+
|
121 |
+
# Join the wrapped lines back together using newline characters
|
122 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
123 |
+
|
124 |
+
return wrapped_text
|
125 |
+
|
126 |
+
def process_llm_response(llm_response):
|
127 |
+
ans = wrap_text_preserve_newlines(llm_response['result'])
|
128 |
+
|
129 |
+
sources_used = ' \n'.join(
|
130 |
+
[
|
131 |
+
"<b> - " + source.metadata['source'].split('/')[-1][:-4] + "</b>"
|
132 |
+
for source in llm_response['source_documents']
|
133 |
+
]
|
134 |
+
)
|
135 |
+
|
136 |
+
ans += "\n Sand Hill Road podcast episodes based on your question : \n" + sources_used
|
137 |
+
return ans,sources_used
|
138 |
+
|
139 |
+
def llm_ans(query):
|
140 |
+
start = time.time()
|
141 |
+
llm_response = qa_chain(query)
|
142 |
+
ans,sources_used = process_llm_response(llm_response)
|
143 |
+
end = time.time()
|
144 |
+
|
145 |
+
time_elapsed = int(round(end - start, 0))
|
146 |
+
time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
|
147 |
+
return ans, sources_used ,time_elapsed_str
|
148 |
+
|
149 |
+
|
150 |
+
def predict(message, history):
|
151 |
+
# output = message # debug mode
|
152 |
+
|
153 |
+
output = str(llm_ans(message)[0]).replace("\n", "<br/>")
|
154 |
+
return output
|
155 |
+
|
156 |
+
demo = gr.ChatInterface(
|
157 |
+
predict,
|
158 |
+
title = f' Sand Hill Road Podcast Chatbot'
|
159 |
+
)
|
160 |
+
|
161 |
+
demo.queue()
|
162 |
+
demo.launch(debug=True)
|
faiss_index_shl/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:491d00dbb83399b1954976033a584b7f6d92c631d182662ae4ce6a7fbea4acb5
|
3 |
+
size 4389933
|
faiss_index_shl/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b02757d1a2c734a71e2b08b4569007dfd66dab3fbec3d2590a0b63c55a7dabf7
|
3 |
+
size 2337485
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
faiss-gpu
|
3 |
+
transformers
|
4 |
+
InstructorEmbedding
|
5 |
+
sentence_transformers
|
6 |
+
accelerate
|
7 |
+
bitsandbytes
|
8 |
+
xformers
|
9 |
+
einops
|