FINAL_VQA / app.py
SahilJ2's picture
Update app.py
1494e4d verified
import os
import torch
import torch.nn as nn
import pandas as pd
from PIL import Image
from torchvision import transforms
from transformers import BertTokenizer, AutoModel
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.model_selection import train_test_split
from typing import List
from dataclasses import dataclass
import gradio as gr
import torch, re
import numpy as np
from transformers import WhisperProcessor, WhisperForConditionalGeneration, ViTImageProcessor, BertTokenizer, BlipProcessor, BlipForQuestionAnswering, AutoProcessor, AutoModelForCausalLM, DonutProcessor, VisionEncoderDecoderModel, Pix2StructProcessor, Pix2StructForConditionalGeneration, AutoModelForSeq2SeqLM
import librosa
from PIL import Image
from torch.nn.utils import rnn
from gtts import gTTS
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LabelClassifier(nn.Module):
def __init__(self):
super(LabelClassifier, self).__init__()
self.text_encoder = AutoModel.from_pretrained('bert-base-uncased')
self.image_encoder = AutoModel.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
self.intermediate_dim = 128
self.fusion = nn.Sequential(
nn.Linear(self.text_encoder.config.hidden_size + self.image_encoder.config.hidden_size, self.intermediate_dim),
nn.ReLU(),
nn.Dropout(0.5),
)
self.classifier = nn.Linear(self.intermediate_dim, 6) # Concatenating BERT output and Swin Transformer output
self.criterion = nn.CrossEntropyLoss()
def forward(self,
input_ids: torch.LongTensor,pixel_values: torch.FloatTensor, attention_mask: torch.LongTensor = None, token_type_ids: torch.LongTensor = None, labels: torch.LongTensor = None):
encoded_text = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
encoded_image = self.image_encoder(pixel_values=pixel_values)
# print(encoded_text['last_hidden_state'].shape)
# print(encoded_image['last_hidden_state'].shape)
fused_state = self.fusion(torch.cat((encoded_text['pooler_output'], encoded_image['pooler_output']), dim=1))
# Pass through the classifier
logits = self.classifier(fused_state)
out = {"logits": logits}
if labels is not None:
loss = self.criterion(logits, labels)
out["loss"] = loss
return out
model = LabelClassifier().to(device)
model.load_state_dict(torch.load('classifier.pth', map_location=torch.device('cpu')))
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
processor = ViTImageProcessor.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
# Load the Whisper model in Hugging Face format:
# processor2 = WhisperProcessor.from_pretrained("openai/whisper-medium.en")
# model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en")
def m1(que, image):
processor3 = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model3 = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
inputs = processor3(image, que, return_tensors="pt")
out = model3.generate(**inputs)
return processor3.decode(out[0], skip_special_tokens=True)
def m2(que, image):
processor3 = AutoProcessor.from_pretrained("microsoft/git-large-textvqa")
model3 = AutoModelForCausalLM.from_pretrained("microsoft/git-large-textvqa")
pixel_values = processor3(images=image, return_tensors="pt").pixel_values
input_ids = processor3(text=que, add_special_tokens=False).input_ids
input_ids = [processor3.tokenizer.cls_token_id] + input_ids
input_ids = torch.tensor(input_ids).unsqueeze(0)
generated_ids = model3.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
return processor3.batch_decode(generated_ids, skip_special_tokens=True)[0].split('?', 1)[-1].strip()
def m3(que, image):
# processor3 = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
# model3 = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
# model3.to(device)
# prompt = "<s_docvqa><s_question>{que}</s_question><s_answer>"
# decoder_input_ids = processor3.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
# pixel_values = processor3(image, return_tensors="pt").pixel_values
# outputs = model3.generate(
# pixel_values.to(device),
# decoder_input_ids=decoder_input_ids.to(device),
# max_length=model3.decoder.config.max_position_embeddings,
# pad_token_id=processor3.tokenizer.pad_token_id,
# eos_token_id=processor3.tokenizer.eos_token_id,
# use_cache=True,
# bad_words_ids=[[processor3.tokenizer.unk_token_id]],
# return_dict_in_generate=True,
# )
# sequence = processor3.batch_decode(outputs.sequences)[0]
# sequence = sequence.replace(processor3.tokenizer.eos_token, "").replace(processor3.tokenizer.pad_token, "")
# sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
# return processor3.token2json(sequence)['answer']
model3 = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-docvqa-large")
processor3 = Pix2StructProcessor.from_pretrained("google/pix2struct-docvqa-large")
inputs = processor3(images=image, text=que, return_tensors="pt")
predictions = model3.generate(**inputs)
return processor3.decode(predictions[0], skip_special_tokens=True)
def m4(que, image):
processor3 = Pix2StructProcessor.from_pretrained('google/matcha-plotqa-v1')
model3 = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-plotqa-v1')
inputs = processor3(images=image, text=que, return_tensors="pt")
predictions = model3.generate(**inputs, max_new_tokens=512)
return processor3.decode(predictions[0], skip_special_tokens=True)
def m5(que, image):
model3 = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-ocrvqa-large")
processor3 = Pix2StructProcessor.from_pretrained("google/pix2struct-ocrvqa-large")
inputs = processor3(images=image, text=que, return_tensors="pt")
predictions = model3.generate(**inputs)
return processor3.decode(predictions[0], skip_special_tokens=True)
def m6(que, image):
# model3 = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-infographics-vqa-large")
# processor3 = Pix2StructProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
# inputs = processor3(images=image, text=que, return_tensors="pt")
# predictions = model3.generate(**inputs)
# return processor3.decode(predictions[0], skip_special_tokens=True)
processor3 = Pix2StructProcessor.from_pretrained('google/matcha-plotqa-v1')
model3 = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-plotqa-v1')
inputs = processor3(images=image, text=que, return_tensors="pt")
predictions = model3.generate(**inputs, max_new_tokens=512)
return processor3.decode(predictions[0], skip_special_tokens=True)
def predict_answer(category, que, image):
if category == 0:
return m1(que, image)
elif category == 1:
return m2(que, image)
elif category == 2:
return m3(que, image)
elif category == 3:
return m4(que, image)
elif category == 4:
return m5(que, image)
else:
return m6(que, image)
def transcribe_audio(audio):
# print(audio)
processor2 = WhisperProcessor.from_pretrained("openai/whisper-large-v3",language='en')
model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3")
sampling_rate = audio[0]
audio_data = audio[1]
# print(np.array([audio_data]).shape)
audio_data_float = np.array(audio_data).astype(np.float32)
resampled_audio_data = librosa.resample(audio_data_float, orig_sr=sampling_rate, target_sr=16000)
# Use the model and processor to transcribe the audio:
input_features = processor2(
resampled_audio_data, sampling_rate=16000, return_tensors="pt"
).input_features
# Generate token ids
predicted_ids = model2.generate(input_features)
# Decode token ids to text
transcription = processor2.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def predict_category(que, input_image):
# print(type(input_image))
# print(input_image)
encoded_text = tokenizer(
text=que,
padding='longest',
max_length=24,
truncation=True,
return_tensors='pt',
return_token_type_ids=True,
return_attention_mask=True,
)
encoded_image = processor(input_image, return_tensors='pt').to(device)
dict = {
'input_ids': encoded_text['input_ids'].to(device),
'token_type_ids': encoded_text['token_type_ids'].to(device),
'attention_mask': encoded_text['attention_mask'].to(device),
'pixel_values': encoded_image['pixel_values'].to(device)
}
output = model(input_ids=dict['input_ids'],token_type_ids=dict['token_type_ids'],attention_mask=dict['attention_mask'],pixel_values=dict['pixel_values'])
preds = output["logits"].argmax(axis=-1).cpu().numpy()
return preds[0]
def combine(audio, input_image, text_question=""):
if audio:
que = transcribe_audio(audio)
else:
que = text_question
image = Image.fromarray(input_image).convert('RGB')
category = predict_category(que, image)
answer = predict_answer(category, que, image)
tts = gTTS(answer)
tts.save('answer.mp3')
return que, answer, 'answer.mp3', category
# Define the Gradio interface for recording audio, text input, and image upload
model_interface = gr.Interface(fn=combine,
inputs=[gr.Microphone(label="Ask your question"),
gr.Image(label="Upload the image"),
gr.Textbox(label="Text Question")],
outputs=[gr.Text(label="Transcribed Question"),
gr.Text(label="Answer"),
gr.Audio(label="Audio Answer"),
gr.Text(label="Category")])
# Launch the Gradio interface
model_interface.launch(debug=True)