Spaces:
Runtime error
Runtime error
File size: 9,554 Bytes
39b01b9 1072512 39b01b9 20ceca0 39b01b9 20ceca0 39b01b9 5b02197 39b01b9 20ceca0 39b01b9 20ceca0 39b01b9 7610cf6 39b01b9 7610cf6 39b01b9 7610cf6 39b01b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import torch
import torch.nn as nn
import pandas as pd
from PIL import Image
from torchvision import transforms
from transformers import BertTokenizer, AutoModel
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.model_selection import train_test_split
from typing import List
from dataclasses import dataclass
import gradio as gr
import torch, re
import numpy as np
from transformers import WhisperProcessor, WhisperForConditionalGeneration, ViTImageProcessor, BertTokenizer, BlipProcessor, BlipForQuestionAnswering, AutoProcessor, AutoModelForCausalLM, DonutProcessor, VisionEncoderDecoderModel, Pix2StructProcessor, Pix2StructForConditionalGeneration, AutoModelForSeq2SeqLM
import librosa
from PIL import Image
from torch.nn.utils import rnn
from gtts import gTTS
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LabelClassifier(nn.Module):
def __init__(self):
super(LabelClassifier, self).__init__()
self.text_encoder = AutoModel.from_pretrained('bert-base-uncased')
self.image_encoder = AutoModel.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
self.intermediate_dim = 128
self.fusion = nn.Sequential(
nn.Linear(self.text_encoder.config.hidden_size + self.image_encoder.config.hidden_size, self.intermediate_dim),
nn.ReLU(),
nn.Dropout(0.5),
)
self.classifier = nn.Linear(self.intermediate_dim, 6) # Concatenating BERT output and Swin Transformer output
self.criterion = nn.CrossEntropyLoss()
def forward(self,
input_ids: torch.LongTensor,pixel_values: torch.FloatTensor, attention_mask: torch.LongTensor = None, token_type_ids: torch.LongTensor = None, labels: torch.LongTensor = None):
encoded_text = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
encoded_image = self.image_encoder(pixel_values=pixel_values)
# print(encoded_text['last_hidden_state'].shape)
# print(encoded_image['last_hidden_state'].shape)
fused_state = self.fusion(torch.cat((encoded_text['pooler_output'], encoded_image['pooler_output']), dim=1))
# Pass through the classifier
logits = self.classifier(fused_state)
out = {"logits": logits}
if labels is not None:
loss = self.criterion(logits, labels)
out["loss"] = loss
return out
model = LabelClassifier().to(device)
model.load_state_dict(torch.load('classifier.pth', map_location=torch.device('cpu')))
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
processor = ViTImageProcessor.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
# Load the Whisper model in Hugging Face format:
# processor2 = WhisperProcessor.from_pretrained("openai/whisper-medium.en")
# model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en")
def m1(que, image):
processor3 = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model3 = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
inputs = processor3(image, que, return_tensors="pt")
out = model3.generate(**inputs)
return processor3.decode(out[0], skip_special_tokens=True)
def m2(que, image):
processor3 = AutoProcessor.from_pretrained("microsoft/git-large-textvqa")
model3 = AutoModelForCausalLM.from_pretrained("microsoft/git-large-textvqa")
pixel_values = processor3(images=image, return_tensors="pt").pixel_values
input_ids = processor3(text=que, add_special_tokens=False).input_ids
input_ids = [processor3.tokenizer.cls_token_id] + input_ids
input_ids = torch.tensor(input_ids).unsqueeze(0)
generated_ids = model3.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
return processor3.batch_decode(generated_ids, skip_special_tokens=True)
def m3(que, image):
processor3 = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model3 = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model3.to(device)
prompt = "<s_docvqa><s_question>{que}</s_question><s_answer>"
decoder_input_ids = processor3.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
pixel_values = processor3(image, return_tensors="pt").pixel_values
outputs = model3.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model3.decoder.config.max_position_embeddings,
pad_token_id=processor3.tokenizer.pad_token_id,
eos_token_id=processor3.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor3.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor3.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor3.tokenizer.eos_token, "").replace(processor3.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor3.token2json(sequence)['answer']
def m4(que, image):
processor3 = Pix2StructProcessor.from_pretrained('google/matcha-plotqa-v2')
model3 = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-plotqa-v2')
inputs = processor3(images=image, text=que, return_tensors="pt")
predictions = model3.generate(**inputs, max_new_tokens=512)
return processor3.decode(predictions[0], skip_special_tokens=True)
def m5(que, image):
processor3 = AutoProcessor.from_pretrained("google/pix2struct-ocrvqa-large")
model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-ocrvqa-large")
inputs = processor3(images=image, text=que, return_tensors="pt")
predictions = model3.generate(**inputs)
return processor3.decode(predictions[0], skip_special_tokens=True)
def m6(que, image):
processor3 = AutoProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-infographics-vqa-large")
inputs = processor3(images=image, text=que, return_tensors="pt")
predictions = model3.generate(**inputs)
return processor3.decode(predictions[0], skip_special_tokens=True)
def predict_answer(category, que, image):
if category == 0:
return m1(que, image)
elif category == 1:
return m2(que, image)
elif category == 2:
return m3(que, image)
elif category == 3:
return m4(que, image)
elif category == 4:
return m5(que, image)
else:
return m6(que, image)
def transcribe_audio(audio):
# print(audio)
processor2 = WhisperProcessor.from_pretrained("openai/whisper-large-v3",language='en')
model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3")
sampling_rate = audio[0]
audio_data = audio[1]
# print(np.array([audio_data]).shape)
audio_data_float = np.array(audio_data).astype(np.float32)
resampled_audio_data = librosa.resample(audio_data_float, orig_sr=sampling_rate, target_sr=16000)
# Use the model and processor to transcribe the audio:
input_features = processor2(
resampled_audio_data, sampling_rate=16000, return_tensors="pt"
).input_features
# Generate token ids
predicted_ids = model2.generate(input_features)
# Decode token ids to text
transcription = processor2.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def predict_category(que, input_image):
# print(type(input_image))
# print(input_image)
encoded_text = tokenizer(
text=que,
padding='longest',
max_length=24,
truncation=True,
return_tensors='pt',
return_token_type_ids=True,
return_attention_mask=True,
)
encoded_image = processor(input_image, return_tensors='pt').to(device)
dict = {
'input_ids': encoded_text['input_ids'].to(device),
'token_type_ids': encoded_text['token_type_ids'].to(device),
'attention_mask': encoded_text['attention_mask'].to(device),
'pixel_values': encoded_image['pixel_values'].to(device)
}
output = model(input_ids=dict['input_ids'],token_type_ids=dict['token_type_ids'],attention_mask=dict['attention_mask'],pixel_values=dict['pixel_values'])
preds = output["logits"].argmax(axis=-1).cpu().numpy()
return preds[0]
def combine(audio, input_image, text_question=""):
if audio:
que = transcribe_audio(audio)
else:
que = text_question
image = Image.fromarray(input_image).convert('RGB')
category = predict_category(que, image)
answer = predict_answer(0, que, image)
tts = gTTS(answer)
tts.save('answer.mp3')
return que, answer, 'answer.mp3'
# Define the Gradio interface for recording audio, text input, and image upload
model_interface = gr.Interface(fn=combine,
inputs=[gr.Microphone(label="Ask your question"),
gr.Image(label="Upload the image"),
gr.Textbox(label="Text Question")],
outputs=[gr.Text(label="Transcribed Question"),
gr.Text(label="Answer"),
gr.Audio(label="Audio Answer")])
# Launch the Gradio interface
model_interface.launch(debug=True) |