import os
import torch
import torch.nn as nn
import pandas as pd
from PIL import Image
from torchvision import transforms
from transformers import BertTokenizer, AutoModel
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.model_selection import train_test_split
from typing import List
from dataclasses import dataclass
import gradio as gr
import torch, re
import numpy as np
from transformers import WhisperProcessor, WhisperForConditionalGeneration, ViTImageProcessor, BertTokenizer, BlipProcessor, BlipForQuestionAnswering, AutoProcessor, AutoModelForCausalLM, DonutProcessor, VisionEncoderDecoderModel, Pix2StructProcessor, Pix2StructForConditionalGeneration, AutoModelForSeq2SeqLM

import librosa
from PIL import Image
from torch.nn.utils import rnn
from gtts import gTTS

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class LabelClassifier(nn.Module):
    def __init__(self):
        super(LabelClassifier, self).__init__()
        self.text_encoder = AutoModel.from_pretrained('bert-base-uncased')
        self.image_encoder = AutoModel.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
        self.intermediate_dim = 128
        self.fusion = nn.Sequential(
            nn.Linear(self.text_encoder.config.hidden_size + self.image_encoder.config.hidden_size, self.intermediate_dim),
            nn.ReLU(),
            nn.Dropout(0.5),
        )
        self.classifier = nn.Linear(self.intermediate_dim, 6)  # Concatenating BERT output and Swin Transformer output

        self.criterion = nn.CrossEntropyLoss()


    def forward(self,
        input_ids: torch.LongTensor,pixel_values: torch.FloatTensor, attention_mask: torch.LongTensor = None, token_type_ids: torch.LongTensor = None, labels: torch.LongTensor = None):

        encoded_text = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
        encoded_image = self.image_encoder(pixel_values=pixel_values)

        # print(encoded_text['last_hidden_state'].shape)
        # print(encoded_image['last_hidden_state'].shape)

        fused_state = self.fusion(torch.cat((encoded_text['pooler_output'], encoded_image['pooler_output']), dim=1))


        # Pass through the classifier
        logits = self.classifier(fused_state)

        out = {"logits": logits}

        if labels is not None:
            loss = self.criterion(logits, labels)
            out["loss"] = loss


        return out

model = LabelClassifier().to(device)
model.load_state_dict(torch.load('classifier.pth', map_location=torch.device('cpu')))



tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
processor = ViTImageProcessor.from_pretrained('microsoft/swin-tiny-patch4-window7-224')


# Load the Whisper model in Hugging Face format:
# processor2 = WhisperProcessor.from_pretrained("openai/whisper-medium.en")
# model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en")



def m1(que, image):
    processor3 = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
    model3 = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")

    inputs = processor3(image, que, return_tensors="pt")

    out = model3.generate(**inputs)
    return processor3.decode(out[0], skip_special_tokens=True)

def m2(que, image):
    processor3 = AutoProcessor.from_pretrained("microsoft/git-large-textvqa")
    model3 = AutoModelForCausalLM.from_pretrained("microsoft/git-large-textvqa")

    pixel_values = processor3(images=image, return_tensors="pt").pixel_values

    input_ids = processor3(text=que, add_special_tokens=False).input_ids
    input_ids = [processor3.tokenizer.cls_token_id] + input_ids
    input_ids = torch.tensor(input_ids).unsqueeze(0)

    generated_ids = model3.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
    return processor3.batch_decode(generated_ids, skip_special_tokens=True)

def m3(que, image):
    processor3 = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
    model3 = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")

    model3.to(device)

    prompt = "<s_docvqa><s_question>{que}</s_question><s_answer>"
    decoder_input_ids = processor3.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids

    pixel_values = processor3(image, return_tensors="pt").pixel_values

    outputs = model3.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model3.decoder.config.max_position_embeddings,
        pad_token_id=processor3.tokenizer.pad_token_id,
        eos_token_id=processor3.tokenizer.eos_token_id,
        use_cache=True,
        bad_words_ids=[[processor3.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )

    sequence = processor3.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor3.tokenizer.eos_token, "").replace(processor3.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
    return processor3.token2json(sequence)['answer']

def m4(que, image):
    processor3 = Pix2StructProcessor.from_pretrained('google/matcha-plotqa-v2')
    model3 = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-plotqa-v2')

    inputs = processor3(images=image, text=que, return_tensors="pt")
    predictions = model3.generate(**inputs, max_new_tokens=512)
    return processor3.decode(predictions[0], skip_special_tokens=True)

def m5(que, image):

    processor3 = AutoProcessor.from_pretrained("google/pix2struct-ocrvqa-large")
    model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-ocrvqa-large")

    inputs = processor3(images=image, text=que, return_tensors="pt")

    predictions = model3.generate(**inputs)
    return processor3.decode(predictions[0], skip_special_tokens=True)

def m6(que, image):
    processor3 = AutoProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
    model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-infographics-vqa-large")

    inputs = processor3(images=image, text=que, return_tensors="pt")

    predictions = model3.generate(**inputs)
    return processor3.decode(predictions[0], skip_special_tokens=True)


def predict_answer(category, que, image):
    if category == 0:
        return m1(que, image)
    elif category == 1:
        return m2(que, image)
    elif category == 2:
        return m3(que, image)
    elif category == 3:
        return m4(que, image)
    elif category == 4:
        return m5(que, image)
    else:
        return m6(que, image)



def transcribe_audio(audio):
    # print(audio)
    processor2 = WhisperProcessor.from_pretrained("openai/whisper-large-v3",language='en')
    model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3")

    sampling_rate = audio[0]
    audio_data = audio[1]

    # print(np.array([audio_data]).shape)
    audio_data_float = np.array(audio_data).astype(np.float32)
    resampled_audio_data = librosa.resample(audio_data_float, orig_sr=sampling_rate, target_sr=16000)


    # Use the model and processor to transcribe the audio:
    input_features = processor2(
        resampled_audio_data, sampling_rate=16000, return_tensors="pt"
    ).input_features

    # Generate token ids
    predicted_ids = model2.generate(input_features)

    # Decode token ids to text
    transcription = processor2.batch_decode(predicted_ids, skip_special_tokens=True)[0]

    return transcription


def predict_category(que, input_image):
    # print(type(input_image))
    # print(input_image)

    encoded_text = tokenizer(
        text=que,
        padding='longest',
        max_length=24,
        truncation=True,
        return_tensors='pt',
        return_token_type_ids=True,
        return_attention_mask=True,
    )

    encoded_image = processor(input_image, return_tensors='pt').to(device)

    dict = {
        'input_ids':  encoded_text['input_ids'].to(device),
        'token_type_ids': encoded_text['token_type_ids'].to(device),
        'attention_mask': encoded_text['attention_mask'].to(device),
        'pixel_values': encoded_image['pixel_values'].to(device)
    }

    output = model(input_ids=dict['input_ids'],token_type_ids=dict['token_type_ids'],attention_mask=dict['attention_mask'],pixel_values=dict['pixel_values'])

    preds = output["logits"].argmax(axis=-1).cpu().numpy()

    return preds[0]


def combine(audio, input_image, text_question=""):
    if audio:
        que = transcribe_audio(audio)
    else:
        que = text_question

    image = Image.fromarray(input_image).convert('RGB')
    category = predict_category(que, image)
    answer = predict_answer(0, que, image)

    tts = gTTS(answer)
    tts.save('answer.mp3')
    
    return que, answer, 'answer.mp3'

# Define the Gradio interface for recording audio, text input, and image upload
model_interface = gr.Interface(fn=combine, 
                               inputs=[gr.Microphone(label="Ask your question"), 
                                       gr.Image(label="Upload the image"),
                                       gr.Textbox(label="Text Question")], 
                               outputs=[gr.Text(label="Transcribed Question"), 
                                        gr.Text(label="Answer"), 
                                        gr.Audio(label="Audio Answer")])

# Launch the Gradio interface
model_interface.launch(debug=True)