|
import torch
|
|
import gradio as gr
|
|
import torchvision.transforms as transforms
|
|
from PIL import Image
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
transform_test = transforms.Compose([
|
|
transforms.Resize(256),
|
|
transforms.CenterCrop(224),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
])
|
|
|
|
class_names = [
|
|
'Auto Rickshaws', 'Bikes', 'Cars', 'Motorcycles',
|
|
'Planes', 'Ships', 'Trains'
|
|
]
|
|
class VehicleClassifier(nn.Module):
|
|
def __init__(self):
|
|
super(VehicleClassifier, self).__init__()
|
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
|
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
|
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
|
|
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
|
|
|
|
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
|
|
|
|
self.fc1 = nn.Linear(256 * 14 * 14, 512)
|
|
self.fc2 = nn.Linear(512, 256)
|
|
self.fc3 = nn.Linear(256, 7)
|
|
|
|
self.dropout = nn.Dropout(0.5)
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.pool(F.relu(self.conv1(x)))
|
|
x = self.pool(F.relu(self.conv2(x)))
|
|
x = self.pool(F.relu(self.conv3(x)))
|
|
x = self.pool(F.relu(self.conv4(x)))
|
|
|
|
|
|
x = x.view(-1, 256 * 14 * 14)
|
|
x = F.relu(self.fc1(x))
|
|
x = self.dropout(x)
|
|
x = F.relu(self.fc2(x))
|
|
x = self.dropout(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
model = VehicleClassifier().to('cpu')
|
|
model.load_state_dict(torch.load('vehicle_classifier.pth', map_location=torch.device('cpu')))
|
|
model.eval()
|
|
|
|
def predict(image):
|
|
try:
|
|
image = Image.open(image).convert('RGB')
|
|
image = transform_test(image).unsqueeze(0)
|
|
|
|
print(f"Image shape after transformation: {image.shape}")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(image)
|
|
print(f"Model output: {outputs}")
|
|
_, predicted = torch.max(outputs, 1)
|
|
|
|
prediction = class_names[predicted.item()]
|
|
print(f"Predicted class: {prediction}")
|
|
|
|
return prediction
|
|
except Exception as e:
|
|
print(f"Error during prediction: {e}")
|
|
traceback.print_exc()
|
|
return "An error occurred during prediction."
|
|
|
|
|
|
interface = gr.Interface(
|
|
fn=predict,
|
|
inputs=gr.Image(type='filepath'),
|
|
outputs=gr.Label(num_top_classes=1),
|
|
title="Vehicle Classification",
|
|
description="Upload an image of a vehicle, and the model will predict its type."
|
|
)
|
|
|
|
|
|
interface.launch(share=True)
|
|
|