File size: 15,790 Bytes
46255b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import sys
sys.path.append('SAFMN')

import os
import cv2
import argparse
import glob
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr


########################################## Wavelet colorfix ###################################
from PIL import Image
from torch import Tensor
from torchvision.transforms import ToTensor, ToPILImage
def adain_color_fix(target: Image, source: Image):
    # Convert images to tensors
    to_tensor = ToTensor()
    target_tensor = to_tensor(target).unsqueeze(0)
    source_tensor = to_tensor(source).unsqueeze(0)

    # Apply adaptive instance normalization
    result_tensor = adaptive_instance_normalization(target_tensor, source_tensor)

    # Convert tensor back to image
    to_image = ToPILImage()
    result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))

    return result_image

def wavelet_color_fix(target: Image, source: Image):
    if target.size() != source.size():
        source = source.resize((target.size()[-2], target.size()[-1]), Image.LANCZOS)
    # Convert images to tensors
    to_tensor = ToTensor()
    target_tensor = to_tensor(target).unsqueeze(0)
    source_tensor = to_tensor(source).unsqueeze(0)

    # Apply wavelet reconstruction
    result_tensor = wavelet_reconstruction(target_tensor, source_tensor)

    # Convert tensor back to image
    to_image = ToPILImage()
    result_image = to_image(result_tensor.squeeze(0).clamp_(0.0, 1.0))

    return result_image

def calc_mean_std(feat: Tensor, eps=1e-5):
    """Calculate mean and std for adaptive_instance_normalization.
    Args:
        feat (Tensor): 4D tensor.
        eps (float): A small value added to the variance to avoid
            divide-by-zero. Default: 1e-5.
    """
    size = feat.size()
    assert len(size) == 4, 'The input feature should be 4D tensor.'
    b, c = size[:2]
    feat_var = feat.view(b, c, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(b, c, 1, 1)
    feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
    return feat_mean, feat_std

def adaptive_instance_normalization(content_feat:Tensor, style_feat:Tensor):
    """Adaptive instance normalization.
    Adjust the reference features to have the similar color and illuminations
    as those in the degradate features.
    Args:
        content_feat (Tensor): The reference feature.
        style_feat (Tensor): The degradate features.
    """
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)
    normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)

def wavelet_blur(image: Tensor, radius: int):
    """
    Apply wavelet blur to the input tensor.
    """
    # input shape: (1, 3, H, W)
    # convolution kernel
    kernel_vals = [
        [0.0625, 0.125, 0.0625],
        [0.125, 0.25, 0.125],
        [0.0625, 0.125, 0.0625],
    ]
    kernel = torch.tensor(kernel_vals, dtype=image.dtype, device=image.device)
    # add channel dimensions to the kernel to make it a 4D tensor
    kernel = kernel[None, None]
    # repeat the kernel across all input channels
    kernel = kernel.repeat(3, 1, 1, 1)
    image = F.pad(image, (radius, radius, radius, radius), mode='replicate')
    # apply convolution
    output = F.conv2d(image, kernel, groups=3, dilation=radius)
    return output

def wavelet_decomposition(image: Tensor, levels=5):
    """
    Apply wavelet decomposition to the input tensor.
    This function only returns the low frequency & the high frequency.
    """
    high_freq = torch.zeros_like(image)
    for i in range(levels):
        radius = 2 ** i
        low_freq = wavelet_blur(image, radius)
        high_freq += (image - low_freq)
        image = low_freq

    return high_freq, low_freq

def wavelet_reconstruction(content_feat:Tensor, style_feat:Tensor):
    """
    Apply wavelet decomposition, so that the content will have the same color as the style.
    """
    # calculate the wavelet decomposition of the content feature
    content_high_freq, content_low_freq = wavelet_decomposition(content_feat)
    del content_low_freq
    # calculate the wavelet decomposition of the style feature
    style_high_freq, style_low_freq = wavelet_decomposition(style_feat)
    del style_high_freq
    # reconstruct the content feature with the style's high frequency
    return content_high_freq + style_low_freq

    
########################################## URL Load  ###################################
from torch.hub import download_url_to_file, get_dir
from urllib.parse import urlparse

def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
    """Load file form http url, will download models if necessary.

    Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py

    Args:
        url (str): URL to be downloaded.
        model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
            Default: None.
        progress (bool): Whether to show the download progress. Default: True.
        file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.

    Returns:
        str: The path to the downloaded file.
    """
    if model_dir is None:  # use the pytorch hub_dir
        hub_dir = get_dir()
        model_dir = os.path.join(hub_dir, 'checkpoints')

    os.makedirs(model_dir, exist_ok=True)

    parts = urlparse(url)
    filename = os.path.basename(parts.path)
    if file_name is not None:
        filename = file_name
    cached_file = os.path.abspath(os.path.join(model_dir, filename))
    if not os.path.exists(cached_file):
        print(f'Downloading: "{url}" to {cached_file}\n')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
    return cached_file


########################################## Model Define  ###################################
# Layer Norm
class LayerNorm(nn.Module):
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape, )

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x

# CCM
class CCM(nn.Module):
    def __init__(self, dim, growth_rate=2.0):
        super().__init__()
        hidden_dim = int(dim * growth_rate)

        self.ccm = nn.Sequential(
            nn.Conv2d(dim, hidden_dim, 3, 1, 1),
            nn.GELU(), 
            nn.Conv2d(hidden_dim, dim, 1, 1, 0)
        )

    def forward(self, x):
        return self.ccm(x)


# SAFM
class SAFM(nn.Module):
    def __init__(self, dim, n_levels=4):
        super().__init__()
        self.n_levels = n_levels
        chunk_dim = dim // n_levels

        # Spatial Weighting
        self.mfr = nn.ModuleList([nn.Conv2d(chunk_dim, chunk_dim, 3, 1, 1, groups=chunk_dim) for i in range(self.n_levels)])
        
        # # Feature Aggregation
        self.aggr = nn.Conv2d(dim, dim, 1, 1, 0)
        
        # Activation
        self.act = nn.GELU() 

    def forward(self, x):
        h, w = x.size()[-2:]

        xc = x.chunk(self.n_levels, dim=1)
        out = []
        for i in range(self.n_levels):
            if i > 0:
                p_size = (h//2**i, w//2**i)
                s = F.adaptive_max_pool2d(xc[i], p_size)
                s = self.mfr[i](s)
                s = F.interpolate(s, size=(h, w), mode='nearest')
            else:
                s = self.mfr[i](xc[i])
            out.append(s)

        out = self.aggr(torch.cat(out, dim=1))
        out = self.act(out) * x
        return out

class AttBlock(nn.Module):
    def __init__(self, dim, ffn_scale=2.0):
        super().__init__()

        self.norm1 = LayerNorm(dim) 
        self.norm2 = LayerNorm(dim) 

        # Multiscale Block
        self.safm = SAFM(dim) 
        # Feedforward layer
        self.ccm = CCM(dim, ffn_scale) 

    def forward(self, x):
        x = self.safm(self.norm1(x)) + x
        x = self.ccm(self.norm2(x)) + x
        return x
        
        
class SAFMN(nn.Module):
    def __init__(self, dim, n_blocks=8, ffn_scale=2.0, upscaling_factor=4):
        super().__init__()
        self.to_feat = nn.Conv2d(3, dim, 3, 1, 1)

        self.feats = nn.Sequential(*[AttBlock(dim, ffn_scale) for _ in range(n_blocks)])

        self.to_img = nn.Sequential(
            nn.Conv2d(dim, 3 * upscaling_factor**2, 3, 1, 1),
            nn.PixelShuffle(upscaling_factor)
        )

    def forward(self, x):
        x = self.to_feat(x)
        x = self.feats(x) + x
        x = self.to_img(x)
        return x
        
########################################## Gradio inference  ###################################
pretrain_model_url = {
	'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth',
	'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth',
}


# download weights
if not os.path.exists('./experiments/pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'):
	load_file_from_url(url=pretrain_model_url['safmn_x2'], model_dir='./experiments/pretrained_models/', progress=True, file_name=None)

if not os.path.exists('./experiments/pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'):
	load_file_from_url(url=pretrain_model_url['safmn_x4'], model_dir='./experiments/pretrained_models/', progress=True, file_name=None)


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def set_safmn(upscale):
	model = SAFMN(dim=128, n_blocks=16, ffn_scale=2.0, upscaling_factor=upscale)
	if upscale == 2:
		model_path = './experiments/pretrained_models/SAFMN_L_Real_LSDIR_x2.pth'
	elif upscale == 4:
		model_path = './experiments/pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'
	else:
		raise NotImplementedError('Only support x2/x4 upscaling!')

	model.load_state_dict(torch.load(model_path)['params'], strict=True)
	model.eval()
	return model.to(device)


def img2patch(lq, scale=4, crop_size=512):
    b, c, hl, wl = lq.size()    
    h, w = hl*scale, wl*scale
    sr_size = (b, c, h, w)
    assert b == 1

    crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale

    #adaptive step_i, step_j
    num_row = (h - 1) // crop_size_h + 1
    num_col = (w - 1) // crop_size_w + 1

    import math
    step_j = crop_size_w if num_col == 1 else math.ceil((w - crop_size_w) / (num_col - 1) - 1e-8)
    step_i = crop_size_h if num_row == 1 else math.ceil((h - crop_size_h) / (num_row - 1) - 1e-8)

    step_i = step_i // scale * scale
    step_j = step_j // scale * scale

    parts = []
    idxes = []

    i = 0  # 0~h-1
    last_i = False
    while i < h and not last_i:
        j = 0
        if i + crop_size_h >= h:
            i = h - crop_size_h
            last_i = True

        last_j = False
        while j < w and not last_j:
            if j + crop_size_w >= w:
                j = w - crop_size_w
                last_j = True
            parts.append(lq[:, :, i // scale :(i + crop_size_h) // scale, j // scale:(j + crop_size_w) // scale])
            idxes.append({'i': i, 'j': j})
            j = j + step_j
        i = i + step_i

    return torch.cat(parts, dim=0), idxes, sr_size


def patch2img(outs, idxes, sr_size, scale=4, crop_size=512):
    preds = torch.zeros(sr_size).to(outs.device)
    b, c, h, w = sr_size

    count_mt = torch.zeros((b, 1, h, w)).to(outs.device)
    crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale

    for cnt, each_idx in enumerate(idxes):
        i = each_idx['i']
        j = each_idx['j']
        preds[0, :, i: i + crop_size_h, j: j + crop_size_w] += outs[cnt]
        count_mt[0, 0, i: i + crop_size_h, j: j + crop_size_w] += 1.

    return (preds / count_mt).to(outs.device)


os.makedirs('./results', exist_ok=True)

def inference(image, upscale, large_input_flag, color_fix):
	upscale = int(upscale) # convert type to int
	if upscale > 4: 
		upscale = 4 
	if 0 < upscale < 3:
		upscale = 2

	model = set_safmn(upscale)

	img = cv2.imread(str(image), cv2.IMREAD_COLOR)
	print(f'input size: {img.shape}')

	# img2tensor
	img = img.astype(np.float32) / 255.
	img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
	img = img.unsqueeze(0).to(device)

	# inference
	if large_input_flag:
		patches, idx, size = img2patch(img, scale=upscale)
		with torch.no_grad():
			n = len(patches)
			outs = []
			m = 1
			i = 0
			while i < n:
				j = i + m
				if j >= n:
					j = n
				pred = output = model(patches[i:j])
				if isinstance(pred, list):
					pred = pred[-1]
				outs.append(pred.detach())
				i = j
			output = torch.cat(outs, dim=0)

		output = patch2img(output, idx, size, scale=upscale)
	else:
		with torch.no_grad():
			output = model(img)

	# color fix
	if color_fix:
		img = F.interpolate(img, scale_factor=upscale, mode='bilinear')
		output = wavelet_reconstruction(output, img)
	# tensor2img
	output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
	if output.ndim == 3:
		output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
	output = (output * 255.0).round().astype(np.uint8)

	# save restored img
	save_path = f'results/out.png'
	cv2.imwrite(save_path, output)

	output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
	return output, save_path



title = "Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution"
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/sunny2109/SAFMN' target='_blank'><b>Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution (ICCV 2023)</b></a>.<br>
"""
article = r"""
If SAFMN is helpful, please help to ⭐ the <a href='https://github.com/sunny2109/SAFMN' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/sunny2109/SAFMN?style=social)](https://github.com/sunny2109/SAFMN)

---
πŸ“ **Citation**

If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{sun2023safmn,
    title={Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution},
    author={Sun, Long and Dong, Jiangxin and Tang, Jinhui and Pan, Jinshan},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
    year={2023}
}
```

<center><img src='https://visitor-badge.laobi.icu/badge?page_id=sunny2109/SAFMN' alt='visitors'></center>
"""

demo = gr.Interface(
    inference, [
        gr.inputs.Image(type="filepath", label="Input"),
        gr.inputs.Number(default=2, label="Upscaling factor (up to 4)"),
		gr.inputs.Checkbox(default=False, label="Memory-efficient inference"),
        gr.inputs.Checkbox(default=False, label="Color correction"),
    ], [
        gr.outputs.Image(type="numpy", label="Output"),
        gr.outputs.File(label="Download the output")
    ],
    title=title,
    description=description,
    article=article,       
)

demo.queue(concurrency_count=2)
demo.launch()