Meloo commited on
Commit
018302f
1 Parent(s): 13196f5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import os
 
2
  import argparse
 
3
  import numpy as np
4
  import os
5
  import torch
@@ -13,7 +15,6 @@ from models.safmn_arch import SAFMN
13
  from gradio_imageslider import ImageSlider
14
 
15
 
16
- ########################################## Gradio inference ###################################
17
  pretrain_model_url = {
18
  'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth',
19
  'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth',
@@ -171,7 +172,8 @@ title = "SAFMN for Real-world SR"
171
  description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
172
  #### Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/)
173
  #### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
174
- #### Drag the slider on the super-resolution image left and right to see the changes in the image details. SAFMN performs x2/x4 upscaling on the input image.
 
175
  <br>
176
  ### If our work is useful for your research, please consider citing:
177
  <code>
@@ -214,9 +216,9 @@ demo = gr.Interface(
214
  fn=inference,
215
  inputs=[
216
  gr.Image(value="real_testdata/004.png", type="pil", label="Input"),
217
- gr.Number(value=2, label="Upscaling factor (up to 4)"),
218
- gr.Checkbox(value=False, label="Memory-efficient inference"),
219
- gr.Checkbox(value=False, label="Color correction"),
220
  ],
221
  outputs=ImageSlider(label="Super-Resolved Image",
222
  type="pil",
 
1
  import os
2
+ import cv2
3
  import argparse
4
+ import glob
5
  import numpy as np
6
  import os
7
  import torch
 
15
  from gradio_imageslider import ImageSlider
16
 
17
 
 
18
  pretrain_model_url = {
19
  'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth',
20
  'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth',
 
172
  description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
173
  #### Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/)
174
  #### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
175
+ #### Drag the slider on the super-resolution image left and right to see the changes in the image details.
176
+ #### SAFMN performs x2/x4 upscaling on the input image. If the input image is larger than 720P, it is recommended to use Memory-efficient inference.
177
  <br>
178
  ### If our work is useful for your research, please consider citing:
179
  <code>
 
216
  fn=inference,
217
  inputs=[
218
  gr.Image(value="real_testdata/004.png", type="pil", label="Input"),
219
+ gr.Number(default=10, label="Upscaling factor (up to 4)"),
220
+ gr.Checkbox(default=False, label="Memory-efficient inference"),
221
+ gr.Checkbox(default=False, label="Color correction"),
222
  ],
223
  outputs=ImageSlider(label="Super-Resolved Image",
224
  type="pil",