Update app.py
Browse files
app.py
CHANGED
@@ -112,9 +112,6 @@ def inference(image, upscale, large_input_flag, color_fix):
|
|
112 |
|
113 |
model = set_safmn(upscale)
|
114 |
|
115 |
-
# img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
116 |
-
# print(f'input size: {img.shape}')
|
117 |
-
|
118 |
# img2tensor
|
119 |
y = np.array(image).astype(np.float32) / 255.
|
120 |
y = torch.from_numpy(np.transpose(y[:, :, [2, 1, 0]], (2, 0, 1))).float()
|
@@ -154,11 +151,6 @@ def inference(image, upscale, large_input_flag, color_fix):
|
|
154 |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
155 |
output = (output * 255.0).round().astype(np.uint8)
|
156 |
|
157 |
-
# # save restored img
|
158 |
-
# save_path = f'results/out.png'
|
159 |
-
# cv2.imwrite(save_path, output)
|
160 |
-
|
161 |
-
# output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
162 |
return image, Image.fromarray(output)
|
163 |
|
164 |
|
|
|
112 |
|
113 |
model = set_safmn(upscale)
|
114 |
|
|
|
|
|
|
|
115 |
# img2tensor
|
116 |
y = np.array(image).astype(np.float32) / 255.
|
117 |
y = torch.from_numpy(np.transpose(y[:, :, [2, 1, 0]], (2, 0, 1))).float()
|
|
|
151 |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
152 |
output = (output * 255.0).round().astype(np.uint8)
|
153 |
|
|
|
|
|
|
|
|
|
|
|
154 |
return image, Image.fromarray(output)
|
155 |
|
156 |
|