Update app.py
Browse files
app.py
CHANGED
@@ -158,12 +158,11 @@ def inference(image, upscale, large_input_flag, color_fix):
|
|
158 |
|
159 |
title = "SAFMN for Real-world SR (running on CPU)"
|
160 |
description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
#### If our work is useful for your research, please consider citing:
|
167 |
<br>
|
168 |
<code>
|
169 |
@inproceedings{sun2023safmn,
|
|
|
158 |
|
159 |
title = "SAFMN for Real-world SR (running on CPU)"
|
160 |
description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
|
161 |
+
### [Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/)
|
162 |
+
### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
|
163 |
+
### Drag the slider on the super-resolution image left and right to see the changes in the image details.
|
164 |
+
### SAFMN performs x2/x4 upscaling on the input image. If the input image is larger than 720P, it is recommended to use Memory-efficient inference.
|
165 |
+
### If our work is useful for your research, please consider citing:
|
|
|
166 |
<br>
|
167 |
<code>
|
168 |
@inproceedings{sun2023safmn,
|