import os
import cv2
import argparse
import glob
import numpy as np
import os
import torch
import torch.nn.functional as F
import gradio as gr
from PIL import Image
from utils.download_url import load_file_from_url
from utils.color_fix import wavelet_reconstruction
from models.safmn_arch import SAFMN
from gradio_imageslider import ImageSlider
pretrain_model_url = {
'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth',
'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth',
}
# download weights
if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'):
load_file_from_url(url=pretrain_model_url['safmn_x2'], model_dir='./pretrained_models/', progress=True, file_name=None)
if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'):
load_file_from_url(url=pretrain_model_url['safmn_x4'], model_dir='./pretrained_models/', progress=True, file_name=None)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def set_safmn(upscale):
model = SAFMN(dim=128, n_blocks=16, ffn_scale=2.0, upscaling_factor=upscale)
if upscale == 2:
model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'
elif upscale == 4:
model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'
else:
raise NotImplementedError('Only support x2/x4 upscaling!')
model.load_state_dict(torch.load(model_path)['params'], strict=True)
model.eval()
return model.to(device)
def img2patch(lq, scale=4, crop_size=512):
b, c, hl, wl = lq.size()
h, w = hl*scale, wl*scale
sr_size = (b, c, h, w)
assert b == 1
crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale
#adaptive step_i, step_j
num_row = (h - 1) // crop_size_h + 1
num_col = (w - 1) // crop_size_w + 1
import math
step_j = crop_size_w if num_col == 1 else math.ceil((w - crop_size_w) / (num_col - 1) - 1e-8)
step_i = crop_size_h if num_row == 1 else math.ceil((h - crop_size_h) / (num_row - 1) - 1e-8)
step_i = step_i // scale * scale
step_j = step_j // scale * scale
parts = []
idxes = []
i = 0 # 0~h-1
last_i = False
while i < h and not last_i:
j = 0
if i + crop_size_h >= h:
i = h - crop_size_h
last_i = True
last_j = False
while j < w and not last_j:
if j + crop_size_w >= w:
j = w - crop_size_w
last_j = True
parts.append(lq[:, :, i // scale :(i + crop_size_h) // scale, j // scale:(j + crop_size_w) // scale])
idxes.append({'i': i, 'j': j})
j = j + step_j
i = i + step_i
return torch.cat(parts, dim=0), idxes, sr_size
def patch2img(outs, idxes, sr_size, scale=4, crop_size=512):
preds = torch.zeros(sr_size).to(outs.device)
b, c, h, w = sr_size
count_mt = torch.zeros((b, 1, h, w)).to(outs.device)
crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale
for cnt, each_idx in enumerate(idxes):
i = each_idx['i']
j = each_idx['j']
preds[0, :, i: i + crop_size_h, j: j + crop_size_w] += outs[cnt]
count_mt[0, 0, i: i + crop_size_h, j: j + crop_size_w] += 1.
return (preds / count_mt).to(outs.device)
def inference(image, upscale, large_input_flag, color_fix):
if upscale is None or not isinstance(upscale, (int, float)) or upscale == 3.:
upscale = 2
upscale = int(upscale)
model = set_safmn(upscale)
# img2tensor
y = np.array(image).astype(np.float32) / 255.
y = torch.from_numpy(np.transpose(y[:, :, [2, 1, 0]], (2, 0, 1))).float()
y = y.unsqueeze(0).to(device)
# inference
if large_input_flag:
patches, idx, size = img2patch(y, scale=upscale)
with torch.no_grad():
n = len(patches)
outs = []
m = 1
i = 0
while i < n:
j = i + m
if j >= n:
j = n
pred = output = model(patches[i:j])
if isinstance(pred, list):
pred = pred[-1]
outs.append(pred.detach())
i = j
output = torch.cat(outs, dim=0)
output = patch2img(output, idx, size, scale=upscale)
else:
with torch.no_grad():
output = model(y)
# color fix
if color_fix:
y = F.interpolate(y, scale_factor=upscale, mode='bilinear')
output = wavelet_reconstruction(output, y)
# tensor2img
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
output = (output * 255.0).round().astype(np.uint8)
return image, Image.fromarray(output)
title = "SAFMN for Real-world SR (running on CPU)"
description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
#### [Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/)
#### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
#### Drag the slider on the super-resolution image left and right to see the changes in the image details.
#### SAFMN performs x2/x4 upscaling on the input image. If the input image is larger than 720P, it is recommended to use Memory-efficient inference.
#### If our work is useful for your research, please consider citing:
@inproceedings{sun2023safmn,
title={Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution},
author={Sun, Long and Dong, Jiangxin and Tang, Jinhui and Pan, Jinshan},
booktitle={ICCV},
year={2023}
}
'''
article = "
Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution
" #### Image,Prompts examples examples = [ ['real_testdata/004.png'], ['real_testdata/013.png'], ['real_testdata/014.png'], ['real_testdata/015.png'], ['real_testdata/021.png'], ['real_testdata/032.png'], ['real_testdata/045.png'], ['real_testdata/059.png'], ['real_testdata/058.png'], ['real_testdata/054.png'], ] css = """ .image-frame img, .image-container img { width: auto; height: auto; max-width: none; } """ demo = gr.Interface( fn=inference, inputs=[ gr.Image(value="real_testdata/004.png", type="pil", label="Input"), gr.Number(minimum=2, maximum=4, label="Upscaling factor (up to 4)"), gr.Checkbox(value=False, label="Memory-efficient inference"), gr.Checkbox(value=False, label="Color correction"), ], outputs=ImageSlider(label="Super-Resolved Image", type="pil", show_download_button=True, ), title=title, description=description, article=article, examples=examples, css=css, ) if __name__ == "__main__": demo.launch()