Hugging Face's logo
Hugging Face
Search models, datasets, users...
Models
Datasets
Spaces
Posts
Docs
Solutions
Pricing
Spaces:
Meloo
/
SAFMN
like
2
Logs
App
Files
Community
Settings
SAFMN
/
app.py
Meloo's picture
Meloo
Update app.py
f0dd1d3
verified
15 days ago
raw
Copy download link
history
blame
edit
delete
7.32 kB
import os
import cv2
import argparse
import glob
import numpy as np
import os
import torch
import torch.nn.functional as F
import gradio as gr
from PIL import Image
from utils.download_url import load_file_from_url
from utils.color_fix import wavelet_reconstruction
from models.safmn_arch import SAFMN
from gradio_imageslider import ImageSlider
pretrain_model_url = {
'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth',
'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth',
}
# download weights
if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'):
load_file_from_url(url=pretrain_model_url['safmn_x2'], model_dir='./pretrained_models/', progress=True, file_name=None)
if not os.path.exists('pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'):
load_file_from_url(url=pretrain_model_url['safmn_x4'], model_dir='./pretrained_models/', progress=True, file_name=None)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def set_safmn(upscale):
model = SAFMN(dim=128, n_blocks=16, ffn_scale=2.0, upscaling_factor=upscale)
if upscale == 2:
model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'
elif upscale == 4:
model_path = 'pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'
else:
raise NotImplementedError('Only support x2/x4 upscaling!')
model.load_state_dict(torch.load(model_path)['params'], strict=True)
model.eval()
return model.to(device)
def img2patch(lq, scale=4, crop_size=512):
b, c, hl, wl = lq.size()
h, w = hl*scale, wl*scale
sr_size = (b, c, h, w)
assert b == 1
crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale
#adaptive step_i, step_j
num_row = (h - 1) // crop_size_h + 1
num_col = (w - 1) // crop_size_w + 1
import math
step_j = crop_size_w if num_col == 1 else math.ceil((w - crop_size_w) / (num_col - 1) - 1e-8)
step_i = crop_size_h if num_row == 1 else math.ceil((h - crop_size_h) / (num_row - 1) - 1e-8)
step_i = step_i // scale * scale
step_j = step_j // scale * scale
parts = []
idxes = []
i = 0 # 0~h-1
last_i = False
while i < h and not last_i:
j = 0
if i + crop_size_h >= h:
i = h - crop_size_h
last_i = True
last_j = False
while j < w and not last_j:
if j + crop_size_w >= w:
j = w - crop_size_w
last_j = True
parts.append(lq[:, :, i // scale :(i + crop_size_h) // scale, j // scale:(j + crop_size_w) // scale])
idxes.append({'i': i, 'j': j})
j = j + step_j
i = i + step_i
return torch.cat(parts, dim=0), idxes, sr_size
def patch2img(outs, idxes, sr_size, scale=4, crop_size=512):
preds = torch.zeros(sr_size).to(outs.device)
b, c, h, w = sr_size
count_mt = torch.zeros((b, 1, h, w)).to(outs.device)
crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale
for cnt, each_idx in enumerate(idxes):
i = each_idx['i']
j = each_idx['j']
preds[0, :, i: i + crop_size_h, j: j + crop_size_w] += outs[cnt]
count_mt[0, 0, i: i + crop_size_h, j: j + crop_size_w] += 1.
return (preds / count_mt).to(outs.device)
def inference(image, upscale, large_input_flag, color_fix):
if upscale is None or not isinstance(upscale, (int, float)) or upscale == 3.:
upscale = 2
upscale = int(upscale)
model = set_safmn(upscale)
# img2tensor
y = np.array(image).astype(np.float32) / 255.
y = torch.from_numpy(np.transpose(y[:, :, [2, 1, 0]], (2, 0, 1))).float()
y = y.unsqueeze(0).to(device)
# inference
if large_input_flag:
patches, idx, size = img2patch(y, scale=upscale)
with torch.no_grad():
n = len(patches)
outs = []
m = 1
i = 0
while i < n:
j = i + m
if j >= n:
j = n
pred = output = model(patches[i:j])
if isinstance(pred, list):
pred = pred[-1]
outs.append(pred.detach())
i = j
output = torch.cat(outs, dim=0)
output = patch2img(output, idx, size, scale=upscale)
else:
with torch.no_grad():
output = model(y)
# color fix
if color_fix:
y = F.interpolate(y, scale_factor=upscale, mode='bilinear')
output = wavelet_reconstruction(output, y)
# tensor2img
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
output = (output * 255.0).round().astype(np.uint8)
# save results
save_path = './out.png'
cv2.imwrite(save_path, output[:, :, ::-1])
return (image, Image.fromarray(output)), save_path
title = "SAFMN for Real-world SR (running on CPU)"
description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
### [Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/)
### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
### Drag the slider on the super-resolution image left and right to see the changes in the image details.
### SAFMN performs x2/x4 upscaling on the input image. If the input image is larger than 720P, it is recommended to use Memory-efficient inference.
### If our work is useful for your research, please consider citing:
@inproceedings{sun2023safmn,
title={Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution},
author={Sun, Long and Dong, Jiangxin and Tang, Jinhui and Pan, Jinshan},
booktitle={ICCV},
year={2023}
}
'''
article = "
Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution
" #### Image examples examples = [ ['real_testdata/060.png'], ['real_testdata/004.png'], ['real_testdata/013.png'], ['real_testdata/014.png'], ['real_testdata/015.png'], ['real_testdata/021.png'], ['real_testdata/032.png'], ['real_testdata/045.png'], ['real_testdata/036.png'], ['real_testdata/058.png'], ] css = """ .image-frame img, .image-container img { width: auto; height: auto; max-width: none; } """ demo = gr.Interface( fn=inference, inputs=[ gr.Image(value="real_testdata/060.png", type="pil", label="Input"), gr.Number(minimum=2, maximum=4, label="Upscaling factor (up to 4)"), gr.Checkbox(value=False, label="Memory-efficient inference"), gr.Checkbox(value=False, label="Color correction"), ], outputs = [ ImageSlider(label="Super-Resolved Image", type="pil", show_download_button=True, ), gr.File(label="Download Output") # gr.Image( # label="Download Output", # type='filepath', # ), ], title=title, description=description, article=article, examples=examples, css=css, ) if __name__ == "__main__": demo.launch()