Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,412 Bytes
f646433 40457bb 55575a2 b16a39a 25bf878 55575a2 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 239ed62 f16fef6 ecfb95b 40457bb 3a7ee34 f646433 e2138e2 40457bb b16a39a 40457bb b16a39a 77414f0 40457bb aa5d3e8 d383ce3 40457bb f646433 40457bb ea8e426 40457bb d80f274 40457bb d80f274 40457bb b584574 239ed62 5d2d710 239ed62 f16fef6 239ed62 ecfb95b f16fef6 0fb8fcf ecfb95b edda1c8 f16fef6 625830f 77414f0 fc967fc f646433 6a5424e f646433 40457bb 77414f0 40457bb 239ed62 f646433 675f93f b16a39a 40457bb f646433 675f93f f646433 aa5d3e8 675f93f f646433 8df6565 34d8968 675f93f 40457bb 675f93f f646433 675f93f 40457bb 675f93f 7218a79 40457bb f646433 40457bb 675f93f 40457bb 675f93f 40457bb 675f93f 40457bb 675f93f 40457bb 94a832d 40457bb 5a326e4 40457bb 9397932 40457bb 675f93f 40457bb 22f8263 f646433 22f8263 f646433 6a5424e b92ccd8 6a5424e 239ed62 40457bb f646433 239ed62 ea8e426 f646433 40457bb f646433 40457bb f646433 55575a2 f646433 be0aa53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, EulerDiscreteScheduler
from compel import Compel, ReturnedEmbeddingsType
import re
# =====================================
# Prompt weights
# =====================================
import torch
import re
def parse_prompt_attention(text):
re_attention = re.compile(r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""", re.X)
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith('\\'):
res.append([text[1:], 1.0])
elif text == '(':
round_brackets.append(len(res))
elif text == '[':
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ')' and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == ']' and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
parts = re.split(re.compile(r"\s*\bBREAK\b\s*", re.S), text)
for i, part in enumerate(parts):
if i > 0:
res.append(["BREAK", -1])
res.append([part, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def prompt_attention_to_invoke_prompt(attention):
tokens = []
for text, weight in attention:
# Round weight to 2 decimal places
weight = round(weight, 2)
if weight == 1.0:
tokens.append(text)
elif weight < 1.0:
if weight < 0.8:
tokens.append(f"({text}){weight}")
else:
tokens.append(f"({text})-" + "-" * int((1.0 - weight) * 10))
else:
if weight < 1.3:
tokens.append(f"({text})" + "+" * int((weight - 1.0) * 10))
else:
tokens.append(f"({text}){weight}")
return "".join(tokens)
def concat_tensor(t):
t_list = torch.split(t, 1, dim=0)
t = torch.cat(t_list, dim=1)
return t
def merge_embeds(prompt_chanks, compel):
num_chanks = len(prompt_chanks)
if num_chanks != 0:
power_prompt = 1/(num_chanks*(num_chanks+1)//2)
prompt_embs = compel(prompt_chanks)
t_list = list(torch.split(prompt_embs, 1, dim=0))
for i in range(num_chanks):
t_list[-(i+1)] = t_list[-(i+1)] * ((i+1)*power_prompt)
prompt_emb = torch.stack(t_list, dim=0).sum(dim=0)
else:
prompt_emb = compel('')
return prompt_emb
def detokenize(chunk, actual_prompt):
chunk[-1] = chunk[-1].replace('</w>', '')
chanked_prompt = ''.join(chunk).strip()
while '</w>' in chanked_prompt:
if actual_prompt[chanked_prompt.find('</w>')] == ' ':
chanked_prompt = chanked_prompt.replace('</w>', ' ', 1)
else:
chanked_prompt = chanked_prompt.replace('</w>', '', 1)
actual_prompt = actual_prompt.replace(chanked_prompt,'')
return chanked_prompt.strip(), actual_prompt.strip()
def tokenize_line(line, tokenizer): # split into chunks
actual_prompt = line.lower().strip()
actual_tokens = tokenizer.tokenize(actual_prompt)
max_tokens = tokenizer.model_max_length - 2
comma_token = tokenizer.tokenize(',')[0]
chunks = []
chunk = []
for item in actual_tokens:
chunk.append(item)
if len(chunk) == max_tokens:
if chunk[-1] != comma_token:
for i in range(max_tokens-1, -1, -1):
if chunk[i] == comma_token:
actual_chunk, actual_prompt = detokenize(chunk[:i+1], actual_prompt)
chunks.append(actual_chunk)
chunk = chunk[i+1:]
break
else:
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt)
chunks.append(actual_chunk)
chunk = []
else:
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt)
chunks.append(actual_chunk)
chunk = []
if chunk:
actual_chunk, _ = detokenize(chunk, actual_prompt)
chunks.append(actual_chunk)
return chunks
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False):
if compel_process_sd:
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel)
else:
# fix bug weights conversion excessive emphasis
prompt = prompt.replace("((", "(").replace("))", ")").replace("\\", "\\\\\\")
# Convert to Compel
attention = parse_prompt_attention(prompt)
global_attention_chanks = []
for att in attention:
for chank in att[0].split(','):
temp_prompt_chanks = tokenize_line(chank, pipeline.tokenizer)
for small_chank in temp_prompt_chanks:
temp_dict = {
"weight": round(att[1], 2),
"lenght": len(pipeline.tokenizer.tokenize(f'{small_chank},')),
"prompt": f'{small_chank},'
}
global_attention_chanks.append(temp_dict)
max_tokens = pipeline.tokenizer.model_max_length - 2
global_prompt_chanks = []
current_list = []
current_length = 0
for item in global_attention_chanks:
if current_length + item['lenght'] > max_tokens:
global_prompt_chanks.append(current_list)
current_list = [[item['prompt'], item['weight']]]
current_length = item['lenght']
else:
if not current_list:
current_list.append([item['prompt'], item['weight']])
else:
if item['weight'] != current_list[-1][1]:
current_list.append([item['prompt'], item['weight']])
else:
current_list[-1][0] += f" {item['prompt']}"
current_length += item['lenght']
if current_list:
global_prompt_chanks.append(current_list)
if only_convert_string:
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks])
return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks], compel)
def add_comma_after_pattern_ti(text):
pattern = re.compile(r'\b\w+_\d+\b')
modified_text = pattern.sub(lambda x: x.group() + ',', text)
return modified_text
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/Laxhar/noobai-XL-Vpred-0.6/blob/main/noobai-xl-vpred-v0.6.safetensors",
use_safetensors=True,
torch_dtype=torch.float16,
add_watermarker=False
)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.register_to_config(
prediction_type="v_prediction",
rescale_betas_zero_snr=True,
)
pipe.to("cuda")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def infer(
prompt: str,
negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
use_negative_prompt: bool = True,
seed: int = 7,
width: int = 1024,
height: int = 1536,
guidance_scale: float = 3,
num_inference_steps: int = 30,
randomize_seed: bool = True,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
# 初始化 Compel 实例
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
truncate_long_prompts=False
)
# 在 infer 函数中调用 get_embed_new
if not use_negative_prompt:
negative_prompt = ""
prompt = get_embed_new(prompt, pipe, compel, only_convert_string=True)
negative_prompt = get_embed_new(negative_prompt, pipe, compel, only_convert_string=True)
conditioning, pooled = compel([prompt, negative_prompt]) # 必须同时处理来保证长度相等
# 在调用 pipe 时,使用新的参数名称(确保参数名称正确)
image = pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
use_resolution_binning=use_resolution_binning,
).images[0]
return image, seed
examples = [
"nahida (genshin impact)",
"klee (genshin impact)",
]
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("""# 梦羽的模型生成器
### 快速生成NoobAIXL V预测0.6版本的模型图片""")
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="关键词",
show_label=False,
max_lines=5,
placeholder="输入你要的图片关键词",
container=False,
)
run_button = gr.Button("生成", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False, format="png")
with gr.Accordion("高级选项", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True)
negative_prompt = gr.Text(
label="反向词条",
max_lines=5,
lines=4,
placeholder="输入你要排除的图片关键词",
value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
visible=True,
)
seed = gr.Slider(
label="种子",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="随机种子", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="宽度",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="高度",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1536,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="生成步数",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=infer
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
)
gr.on(
triggers=[prompt.submit, run_button.click],
fn=infer,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |