NoobVPre065s / app.py
Menyu's picture
正确转换prompt (#1)
f16fef6 verified
raw
history blame
13.3 kB
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import AutoPipelineForText2Image, AutoencoderKL
from compel import Compel, ReturnedEmbeddingsType
import re
# =====================================
# Prompt weights
# =====================================
import torch
import re
def parse_prompt_attention(text):
re_attention = re.compile(r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""", re.X)
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith('\\'):
res.append([text[1:], 1.0])
elif text == '(':
round_brackets.append(len(res))
elif text == '[':
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ')' and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == ']' and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
parts = re.split(re.compile(r"\s*\bBREAK\b\s*", re.S), text)
for i, part in enumerate(parts):
if i > 0:
res.append(["BREAK", -1])
res.append([part, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def prompt_attention_to_invoke_prompt(attention):
tokens = []
for text, weight in attention:
# Round weight to 2 decimal places
weight = round(weight, 2)
if weight == 1.0:
tokens.append(text)
elif weight < 1.0:
if weight < 0.8:
tokens.append(f"({text}){weight}")
else:
tokens.append(f"({text})-" + "-" * int((1.0 - weight) * 10))
else:
if weight < 1.3:
tokens.append(f"({text})" + "+" * int((weight - 1.0) * 10))
else:
tokens.append(f"({text}){weight}")
return "".join(tokens)
def concat_tensor(t):
t_list = torch.split(t, 1, dim=0)
t = torch.cat(t_list, dim=1)
return t
def merge_embeds(prompt_chanks, compel):
num_chanks = len(prompt_chanks)
if num_chanks != 0:
power_prompt = 1/(num_chanks*(num_chanks+1)//2)
prompt_embs = compel(prompt_chanks)
t_list = list(torch.split(prompt_embs, 1, dim=0))
for i in range(num_chanks):
t_list[-(i+1)] = t_list[-(i+1)] * ((i+1)*power_prompt)
prompt_emb = torch.stack(t_list, dim=0).sum(dim=0)
else:
prompt_emb = compel('')
return prompt_emb
def detokenize(chunk, actual_prompt):
chunk[-1] = chunk[-1].replace('</w>', '')
chanked_prompt = ''.join(chunk).strip()
while '</w>' in chanked_prompt:
if actual_prompt[chanked_prompt.find('</w>')] == ' ':
chanked_prompt = chanked_prompt.replace('</w>', ' ', 1)
else:
chanked_prompt = chanked_prompt.replace('</w>', '', 1)
actual_prompt = actual_prompt.replace(chanked_prompt,'')
return chanked_prompt.strip(), actual_prompt.strip()
def tokenize_line(line, tokenizer): # split into chunks
actual_prompt = line.lower().strip()
actual_tokens = tokenizer.tokenize(actual_prompt)
max_tokens = tokenizer.model_max_length - 2
comma_token = tokenizer.tokenize(',')[0]
chunks = []
chunk = []
for item in actual_tokens:
chunk.append(item)
if len(chunk) == max_tokens:
if chunk[-1] != comma_token:
for i in range(max_tokens-1, -1, -1):
if chunk[i] == comma_token:
actual_chunk, actual_prompt = detokenize(chunk[:i+1], actual_prompt)
chunks.append(actual_chunk)
chunk = chunk[i+1:]
break
else:
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt)
chunks.append(actual_chunk)
chunk = []
else:
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt)
chunks.append(actual_chunk)
chunk = []
if chunk:
actual_chunk, _ = detokenize(chunk, actual_prompt)
chunks.append(actual_chunk)
return chunks
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False):
if compel_process_sd:
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel)
else:
# fix bug weights conversion excessive emphasis
prompt = prompt.replace("((", "(").replace("))", ")").replace("\\", "\\\\\\")
# Convert to Compel
attention = parse_prompt_attention(prompt)
global_attention_chanks = []
for att in attention:
for chank in att[0].split(','):
temp_prompt_chanks = tokenize_line(chank, pipeline.tokenizer)
for small_chank in temp_prompt_chanks:
temp_dict = {
"weight": round(att[1], 2),
"lenght": len(pipeline.tokenizer.tokenize(f'{small_chank},')),
"prompt": f'{small_chank},'
}
global_attention_chanks.append(temp_dict)
max_tokens = pipeline.tokenizer.model_max_length - 2
global_prompt_chanks = []
current_list = []
current_length = 0
for item in global_attention_chanks:
if current_length + item['lenght'] > max_tokens:
global_prompt_chanks.append(current_list)
current_list = [[item['prompt'], item['weight']]]
current_length = item['lenght']
else:
if not current_list:
current_list.append([item['prompt'], item['weight']])
else:
if item['weight'] != current_list[-1][1]:
current_list.append([item['prompt'], item['weight']])
else:
current_list[-1][0] += f" {item['prompt']}"
current_length += item['lenght']
if current_list:
global_prompt_chanks.append(current_list)
if only_convert_string:
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks])
return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks], compel)
def add_comma_after_pattern_ti(text):
pattern = re.compile(r'\b\w+_\d+\b')
modified_text = pattern.sub(lambda x: x.group() + ',', text)
return modified_text
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = AutoPipelineForText2Image.from_pretrained(
"anon4ik/noobaiXLNAIXL_epsilonPred05Version_diffusers",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False
)
pipe.to("cuda")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def infer(
prompt: str,
negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
use_negative_prompt: bool = True,
seed: int = 7,
width: int = 1024,
height: int = 1536,
guidance_scale: float = 3,
num_inference_steps: int = 30,
randomize_seed: bool = True,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
# 初始化 Compel 实例
compel_instance = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
truncate_long_prompts=False
)
# 在 infer 函数中调用 get_embed_new
if not use_negative_prompt:
negative_prompt = ""
prompt = get_embed_new(prompt, pipe, compel, only_convert_string=True)
negative_prompt = get_embed_new(negative_prompt, pipe, compel, only_convert_string=True)
conditioning, pooled = compel([prompt, neg_prompt]) # 必须同时处理来保证长度相等
# 在调用 pipe 时,使用新的参数名称(确保参数名称正确)
image = pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
use_resolution_binning=use_resolution_binning,
).images[0]
return image, seed
examples = [
"nahida (genshin impact)",
"klee (genshin impact)",
]
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("""# 梦羽的模型生成器
### 快速生成NoobAIXL v0.5的模型图片 V1.0模型在另一个项目上""")
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="关键词",
show_label=False,
max_lines=1,
placeholder="输入你要的图片关键词",
container=False,
)
run_button = gr.Button("生成", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False, format="png")
with gr.Accordion("高级选项", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True)
negative_prompt = gr.Text(
label="反向词条",
max_lines=5,
lines=4,
placeholder="输入你要排除的图片关键词",
value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
visible=True,
)
seed = gr.Slider(
label="种子",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="随机种子", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="宽度",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="高度",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1536,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=10,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="生成步数",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=infer
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
)
gr.on(
triggers=[prompt.submit, run_button.click],
fn=infer,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()