Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import AutoPipelineForText2Image, AutoencoderKL, EulerDiscreteScheduler | |
from compel import Compel, ReturnedEmbeddingsType | |
import re | |
# ===================================== | |
# Prompt weights | |
# ===================================== | |
import torch | |
import re | |
def parse_prompt_attention(text): | |
re_attention = re.compile(r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", re.X) | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith('\\'): | |
res.append([text[1:], 1.0]) | |
elif text == '(': | |
round_brackets.append(len(res)) | |
elif text == '[': | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ')' and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == ']' and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
parts = re.split(re.compile(r"\s*\bBREAK\b\s*", re.S), text) | |
for i, part in enumerate(parts): | |
if i > 0: | |
res.append(["BREAK", -1]) | |
res.append([part, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [["", 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
def prompt_attention_to_invoke_prompt(attention): | |
tokens = [] | |
for text, weight in attention: | |
# Round weight to 2 decimal places | |
weight = round(weight, 2) | |
if weight == 1.0: | |
tokens.append(text) | |
elif weight < 1.0: | |
if weight < 0.8: | |
tokens.append(f"({text}){weight}") | |
else: | |
tokens.append(f"({text})-" + "-" * int((1.0 - weight) * 10)) | |
else: | |
if weight < 1.3: | |
tokens.append(f"({text})" + "+" * int((weight - 1.0) * 10)) | |
else: | |
tokens.append(f"({text}){weight}") | |
return "".join(tokens) | |
def concat_tensor(t): | |
t_list = torch.split(t, 1, dim=0) | |
t = torch.cat(t_list, dim=1) | |
return t | |
def merge_embeds(prompt_chanks, compel): | |
num_chanks = len(prompt_chanks) | |
if num_chanks != 0: | |
power_prompt = 1/(num_chanks*(num_chanks+1)//2) | |
prompt_embs = compel(prompt_chanks) | |
t_list = list(torch.split(prompt_embs, 1, dim=0)) | |
for i in range(num_chanks): | |
t_list[-(i+1)] = t_list[-(i+1)] * ((i+1)*power_prompt) | |
prompt_emb = torch.stack(t_list, dim=0).sum(dim=0) | |
else: | |
prompt_emb = compel('') | |
return prompt_emb | |
def detokenize(chunk, actual_prompt): | |
chunk[-1] = chunk[-1].replace('</w>', '') | |
chanked_prompt = ''.join(chunk).strip() | |
while '</w>' in chanked_prompt: | |
if actual_prompt[chanked_prompt.find('</w>')] == ' ': | |
chanked_prompt = chanked_prompt.replace('</w>', ' ', 1) | |
else: | |
chanked_prompt = chanked_prompt.replace('</w>', '', 1) | |
actual_prompt = actual_prompt.replace(chanked_prompt,'') | |
return chanked_prompt.strip(), actual_prompt.strip() | |
def tokenize_line(line, tokenizer): # split into chunks | |
actual_prompt = line.lower().strip() | |
actual_tokens = tokenizer.tokenize(actual_prompt) | |
max_tokens = tokenizer.model_max_length - 2 | |
comma_token = tokenizer.tokenize(',')[0] | |
chunks = [] | |
chunk = [] | |
for item in actual_tokens: | |
chunk.append(item) | |
if len(chunk) == max_tokens: | |
if chunk[-1] != comma_token: | |
for i in range(max_tokens-1, -1, -1): | |
if chunk[i] == comma_token: | |
actual_chunk, actual_prompt = detokenize(chunk[:i+1], actual_prompt) | |
chunks.append(actual_chunk) | |
chunk = chunk[i+1:] | |
break | |
else: | |
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt) | |
chunks.append(actual_chunk) | |
chunk = [] | |
else: | |
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt) | |
chunks.append(actual_chunk) | |
chunk = [] | |
if chunk: | |
actual_chunk, _ = detokenize(chunk, actual_prompt) | |
chunks.append(actual_chunk) | |
return chunks | |
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False): | |
if compel_process_sd: | |
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel) | |
else: | |
# fix bug weights conversion excessive emphasis | |
prompt = prompt.replace("((", "(").replace("))", ")").replace("\\", "\\\\\\") | |
# Convert to Compel | |
attention = parse_prompt_attention(prompt) | |
global_attention_chanks = [] | |
for att in attention: | |
for chank in att[0].split(','): | |
temp_prompt_chanks = tokenize_line(chank, pipeline.tokenizer) | |
for small_chank in temp_prompt_chanks: | |
temp_dict = { | |
"weight": round(att[1], 2), | |
"lenght": len(pipeline.tokenizer.tokenize(f'{small_chank},')), | |
"prompt": f'{small_chank},' | |
} | |
global_attention_chanks.append(temp_dict) | |
max_tokens = pipeline.tokenizer.model_max_length - 2 | |
global_prompt_chanks = [] | |
current_list = [] | |
current_length = 0 | |
for item in global_attention_chanks: | |
if current_length + item['lenght'] > max_tokens: | |
global_prompt_chanks.append(current_list) | |
current_list = [[item['prompt'], item['weight']]] | |
current_length = item['lenght'] | |
else: | |
if not current_list: | |
current_list.append([item['prompt'], item['weight']]) | |
else: | |
if item['weight'] != current_list[-1][1]: | |
current_list.append([item['prompt'], item['weight']]) | |
else: | |
current_list[-1][0] += f" {item['prompt']}" | |
current_length += item['lenght'] | |
if current_list: | |
global_prompt_chanks.append(current_list) | |
if only_convert_string: | |
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks]) | |
return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks], compel) | |
def add_comma_after_pattern_ti(text): | |
pattern = re.compile(r'\b\w+_\d+\b') | |
modified_text = pattern.sub(lambda x: x.group() + ',', text) | |
return modified_text | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 4096 | |
if torch.cuda.is_available(): | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = AutoPipelineForText2Image.from_pretrained( | |
"Menyu/noobaiXLNAIXL_vPred065SVersion", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
add_watermarker=False | |
) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.scheduler.register_to_config( | |
prediction_type="v_prediction", | |
rescale_betas_zero_snr=True, | |
) | |
pipe.to("cuda") | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def infer( | |
prompt: str, | |
negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
use_negative_prompt: bool = True, | |
seed: int = 7, | |
width: int = 832, | |
height: int = 1216, | |
guidance_scale: float = 3, | |
num_inference_steps: int = 30, | |
randomize_seed: bool = True, | |
use_resolution_binning: bool = True, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator().manual_seed(seed) | |
# 初始化 Compel 实例 | |
compel = Compel( | |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], | |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True], | |
truncate_long_prompts=False | |
) | |
# 在 infer 函数中调用 get_embed_new | |
if not use_negative_prompt: | |
negative_prompt = "" | |
prompt = get_embed_new(prompt, pipe, compel, only_convert_string=True) | |
negative_prompt = get_embed_new(negative_prompt, pipe, compel, only_convert_string=True) | |
conditioning, pooled = compel([prompt, negative_prompt]) # 必须同时处理来保证长度相等 | |
# 在调用 pipe 时,使用新的参数名称(确保参数名称正确) | |
image = pipe( | |
prompt_embeds=conditioning[0:1], | |
pooled_prompt_embeds=pooled[0:1], | |
negative_prompt_embeds=conditioning[1:2], | |
negative_pooled_prompt_embeds=pooled[1:2], | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
use_resolution_binning=use_resolution_binning, | |
).images[0] | |
return image, seed | |
examples = [ | |
"nahida (genshin impact)", | |
"klee (genshin impact)", | |
] | |
css = ''' | |
.gradio-container{max-width: 560px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("""# 梦羽的模型生成器 | |
### 快速生成NoobAIXL V预测0.65s版本的模型图片""") | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="关键词", | |
show_label=False, | |
max_lines=5, | |
placeholder="输入你要的图片关键词", | |
container=False, | |
) | |
run_button = gr.Button("生成", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False, format="png") | |
with gr.Accordion("高级选项", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True) | |
negative_prompt = gr.Text( | |
label="反向词条", | |
max_lines=5, | |
lines=4, | |
placeholder="输入你要排除的图片关键词", | |
value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="种子", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="随机种子", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="宽度", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=832, | |
) | |
height = gr.Slider( | |
label="高度", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=1216, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=10, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="生成步数", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], | |
fn=infer | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
) | |
gr.on( | |
triggers=[prompt.submit, run_button.click], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
randomize_seed, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() |