Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,92 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
|
5 |
-
import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
7 |
import torch
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
@spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
}
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
SAFETY_CHECKER = False
|
10 |
+
|
11 |
+
# Constants
|
12 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
repo = "advokat/noobaiXLNAIXL_epsilonPred075"
|
14 |
+
checkpoints = {
|
15 |
+
"1-Step" : ["noobaiXLNAIXL_epsilonPred075.safetensors", 1],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
}
|
17 |
+
loaded = None
|
18 |
|
19 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
22 |
|
23 |
+
if SAFETY_CHECKER:
|
24 |
+
from safety_checker import StableDiffusionSafetyChecker
|
25 |
+
from transformers import CLIPFeatureExtractor
|
26 |
+
|
27 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
28 |
+
"CompVis/stable-diffusion-safety-checker"
|
29 |
+
).to("cuda")
|
30 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
31 |
+
"openai/clip-vit-base-patch32"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
|
34 |
+
def check_nsfw_images(
|
35 |
+
images: list[Image.Image],
|
36 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
37 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
38 |
+
has_nsfw_concepts = safety_checker(
|
39 |
+
images=[images],
|
40 |
+
clip_input=safety_checker_input.pixel_values.to("cuda")
|
41 |
+
)
|
42 |
+
|
43 |
+
return images, has_nsfw_concepts
|
44 |
+
|
45 |
+
# Function
|
46 |
+
@spaces.GPU(enable_queue=True)
|
47 |
+
def generate_image(prompt, ckpt):
|
48 |
+
global loaded
|
49 |
+
print(prompt, ckpt)
|
50 |
+
|
51 |
+
checkpoint = checkpoints[ckpt][0]
|
52 |
+
num_inference_steps = checkpoints[ckpt][1]
|
53 |
+
|
54 |
+
if loaded != num_inference_steps:
|
55 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
56 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
57 |
+
loaded = num_inference_steps
|
58 |
+
|
59 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
60 |
+
|
61 |
+
if SAFETY_CHECKER:
|
62 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
63 |
+
if any(has_nsfw_concepts):
|
64 |
+
gr.Warning("NSFW content detected.")
|
65 |
+
return Image.new("RGB", (512, 512))
|
66 |
+
return images[0]
|
67 |
+
return results.images[0]
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
# Gradio Interface
|
72 |
+
|
73 |
+
with gr.Blocks(css="style.css") as demo:
|
74 |
+
gr.HTML("<h1><center>SDXL-Lightning ⚡</center></h1>")
|
75 |
+
gr.HTML("<p><center>Lightning-fast text-to-image generation</center></p><p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>")
|
76 |
+
with gr.Group():
|
77 |
+
with gr.Row():
|
78 |
+
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
79 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
80 |
+
submit = gr.Button(scale=1, variant='primary')
|
81 |
+
img = gr.Image(label='SDXL-Lightning Generated Image')
|
82 |
+
|
83 |
+
prompt.submit(fn=generate_image,
|
84 |
+
inputs=[prompt, ckpt],
|
85 |
+
outputs=img,
|
86 |
+
)
|
87 |
+
submit.click(fn=generate_image,
|
88 |
+
inputs=[prompt, ckpt],
|
89 |
+
outputs=img,
|
90 |
+
)
|
91 |
+
|
92 |
+
demo.queue().launch()
|