File size: 4,446 Bytes
2fc39d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd69181
2fc39d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import spaces
import os

from huggingface_hub import Repository
from huggingface_hub import login

init_feedback = False

try:
    login(token = os.environ['HUB_TOKEN'])

    repo = Repository(
        local_dir="backend_fn",
        repo_type="dataset",
        clone_from=os.environ['DATASET'],
        token=True,
        git_email='zhiheng_dev@dahreply.ai'
    )
    repo.git_pull()

    init_feedback = True
except:
    pass

import json
import uuid
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

if init_feedback:
    from backend_fn.feedback import feedback

from gradio_modal import Modal

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
model_name = "Merdeka-LLM/merdeka-llm-hr-3b-128k-instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True)

histories = []
action = None
feedback_index = None

session_id = uuid.uuid1().__str__()

@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    # system_message,
    max_tokens = 4096,
    temperature = 0.01,
    top_p = 0.95,
):
    messages = [
        {"role": "system", "content": "You are a professional Human Resource advisor who is familiar with HR related Malaysia Law."}
    ]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    generate_kwargs = dict(
        model_inputs,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        streamer=streamer
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    for new_token in streamer:
      if new_token != '<':
          response += new_token
          yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

def submit_feedback(value):
    feedback(session_id, json.dumps(histories), value, action, feedback_index)


with gr.Blocks() as demo:
    def vote(history,data: gr.LikeData):
        global histories
        global action
        global feedback_index
        histories = history
        action = data.liked
        feedback_index = data.index[0]

    with Modal(visible=False) as modal:
        textb = gr.Textbox(
            label='Actual response',
            info='Leave blank if the answer is good enough'
        )

        submit_btn = gr.Button(
            'Submit'
        )

        submit_btn.click(submit_feedback,textb)
        submit_btn.click(lambda: Modal(visible=False), None, modal)
        submit_btn.click(lambda x: gr.update(value=''), [],[textb])


    ci = gr.ChatInterface(
        respond,
        description='Due to an unknown bug in Gradio, we are unable to expand the conversation section to full height.'
        # fill_height=True
        # additional_inputs=[
        #     # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        #     gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        #     gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
        #     gr.Slider(
        #         minimum=0.1,
        #         maximum=1.0,
        #         value=0.95,
        #         step=0.05,
        #         label="Top-p (nucleus sampling)",
        #     ),
        # ],
    )


    ci.chatbot.show_copy_button=True
    # ci.chatbot.value=[(None,"Hello! I'm here to assist you with understanding the laws and acts of Malaysia.")]
    # ci.chatbot.height=500

    if init_feedback:
        ci.chatbot.like(vote, ci.chatbot, None).then(
            lambda: Modal(visible=True), None, modal
        )

if __name__ == "__main__":
    demo.launch(
        
    )