Spaces:
Configuration error
Configuration error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. | |
import fire | |
from llama import Llama | |
from typing import List | |
def main( | |
ckpt_dir: str, | |
tokenizer_path: str, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
max_seq_len: int = 128, | |
max_gen_len: int = 64, | |
max_batch_size: int = 4, | |
): | |
""" | |
Entry point of the program for generating text using a pretrained model. | |
Args: | |
ckpt_dir (str): The directory containing checkpoint files for the pretrained model. | |
tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding. | |
temperature (float, optional): The temperature value for controlling randomness in generation. | |
Defaults to 0.6. | |
top_p (float, optional): The top-p sampling parameter for controlling diversity in generation. | |
Defaults to 0.9. | |
max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 128. | |
max_gen_len (int, optional): The maximum length of generated sequences. Defaults to 64. | |
max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 4. | |
""" | |
generator = Llama.build( | |
ckpt_dir=ckpt_dir, | |
tokenizer_path=tokenizer_path, | |
max_seq_len=max_seq_len, | |
max_batch_size=max_batch_size, | |
) | |
prompts: List[str] = [ | |
# For these prompts, the expected answer is the natural continuation of the prompt | |
"I believe the meaning of life is", | |
"Simply put, the theory of relativity states that ", | |
"""A brief message congratulating the team on the launch: | |
Hi everyone, | |
I just """, | |
# Few shot prompt (providing a few examples before asking model to complete more); | |
"""Translate English to French: | |
sea otter => loutre de mer | |
peppermint => menthe poivrée | |
plush girafe => girafe peluche | |
cheese =>""", | |
] | |
results = generator.text_completion( | |
prompts, | |
max_gen_len=max_gen_len, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
for prompt, result in zip(prompts, results): | |
print(prompt) | |
print(f"> {result['generation']}") | |
print("\n==================================\n") | |
if __name__ == "__main__": | |
fire.Fire(main) | |