File size: 1,494 Bytes
00db68b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import time
import torch
from cogvideox.api.api import infer_forward_api, update_diffusion_transformer_api, update_edition_api
from cogvideox.ui.ui import ui_modelscope, ui_eas, ui
if __name__ == "__main__":
# Choose the ui mode
ui_mode = "eas"
# Low gpu memory mode, this is used when the GPU memory is under 16GB
low_gpu_memory_mode = False
# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype = torch.bfloat16
# Server ip
server_name = "0.0.0.0"
server_port = 7860
# Params below is used when ui_mode = "modelscope"
model_name = "models/Diffusion_Transformer/CogVideoX-Fun-5b-InP"
savedir_sample = "samples"
if ui_mode == "modelscope":
demo, controller = ui_modelscope(model_name, savedir_sample, low_gpu_memory_mode, weight_dtype)
elif ui_mode == "eas":
demo, controller = ui_eas(model_name, savedir_sample)
else:
demo, controller = ui(low_gpu_memory_mode, weight_dtype)
# launch gradio
app, _, _ = demo.queue(status_update_rate=1).launch(
server_name=server_name,
server_port=server_port,
prevent_thread_lock=True
)
# launch api
infer_forward_api(None, app, controller)
update_diffusion_transformer_api(None, app, controller)
update_edition_api(None, app, controller)
# not close the python
while True:
time.sleep(5) |