Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
TextIteratorStreamer, | |
pipeline, | |
) | |
from threading import Thread | |
access_token = os.getenv('HF_TOKEN') | |
# The huggingface model id for Finetuned model | |
checkpoint = "Mikhil-jivus/Llama-32-3B-FineTuned" | |
# Download and load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True,token=access_token) | |
model = AutoModelForCausalLM.from_pretrained( | |
checkpoint, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True,token=access_token | |
) | |
# Text generation pipeline | |
phi2 = pipeline( | |
"text-generation", | |
tokenizer=tokenizer, | |
model=model, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
device_map="auto", | |
) | |
# Function that accepts a prompt and generates text using the phi2 pipeline | |
def generate(message, chat_history, max_new_tokens): | |
instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'." | |
final_prompt = f"Instruction: {instruction}\n" | |
for sent, received in chat_history: | |
final_prompt += "User: " + sent + "\n" | |
final_prompt += "Assistant: " + received + "\n" | |
final_prompt += "User: " + message + "\n" | |
final_prompt += "Output:" | |
# Streamer | |
streamer = TextIteratorStreamer( | |
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0 | |
) | |
thread = Thread( | |
target=phi2, | |
kwargs={ | |
"text_inputs": final_prompt, | |
"max_new_tokens": max_new_tokens, | |
"streamer": streamer, | |
}, | |
) | |
thread.start() | |
generated_text = "" | |
for word in streamer: | |
generated_text += word | |
response = generated_text.strip() | |
if "User:" in response: | |
response = response.split("User:")[0].strip() | |
if "Assistant:" in response: | |
response = response.split("Assistant:")[1].strip() | |
yield response | |
# Chat interface with gradio | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Jivus AI Chatbot Demo | |
This chatbot was created using Llama 3 billion parameter Transformer model. | |
""" | |
) | |
tokens_slider = gr.Slider( | |
8, | |
128, | |
value=21, | |
label="Maximum new tokens", | |
info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.", | |
) | |
chatbot = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[tokens_slider], | |
stop_btn=None, | |
examples=[["Who is Leonhard Euler?"]], | |
) | |
demo.queue().launch() |