EndpointTesting / app.py
Mikhil-jivus's picture
Update app.py
b17ecc2 verified
raw
history blame
3.09 kB
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
access_token = os.getenv('HF_TOKEN')
# Define the repository ID and access token
repo_id = "Mikhil-jivus/Llama-32-3B-FineTuned"
# Load the tokenizer and model from the Hugging Face repository
tokenizer = AutoTokenizer.from_pretrained(repo_id, token=access_token)
model = AutoModelForCausalLM.from_pretrained(
repo_id,
token=access_token,
torch_dtype=torch.bfloat16, # or use torch.bfloat16 if supported
device_map="auto" # Automatically use available GPU/CPU efficiently
)
# Define a function to clean up any repeated segments in the generated response
def clean_response(response, history):
# Check for repetition in the response and remove it
if len(history) > 0:
last_user_message, last_bot_response = history[-1]
if last_bot_response in response:
response = response.replace(last_bot_response, "").strip()
return response
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Add system prompt only once at the beginning of the conversation
if len(history) == 0:
input_text = f"system: {system_message}\nuser: {message}\n"
else:
input_text = f"user: {message}\n"
# Append previous conversation history to the input text
for user_msg, bot_msg in history:
input_text += f"user: {user_msg}\nassistant: {bot_msg}\n"
# Tokenize the input messages
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Move input_ids to the GPU
input_ids = input_ids.to("cuda")
# Create attention mask and move to GPU
attention_mask = input_ids.ne(tokenizer.pad_token_id).long().to("cuda")
# Generate a response
chat_history_ids = model.generate(
input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
attention_mask=attention_mask,
)
# Decode the response
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
# Clean the response to remove any repeated or unnecessary text
response = clean_response(response, history)
# Update history with the new user message and bot response
history.append((message, response))
return response
# Set up the Gradio app interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(share=True)