EndpointTesting / app.py
Mikhil-jivus's picture
Update app.py
0fafb5e verified
raw
history blame
2.73 kB
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TextIteratorStreamer,
pipeline,
)
from threading import Thread
access_token = os.getenv('HF_TOKEN')
# The huggingface model id for Finetuned model
checkpoint = "Mikhil-jivus/Llama-32-3B-FineTuned"
# Download and load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True,token=access_token)
model = AutoModelForCausalLM.from_pretrained(
checkpoint, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True,token=access_token
)
# Text generation pipeline
phi2 = pipeline(
"text-generation",
tokenizer=tokenizer,
model=model,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
device_map="auto",
)
# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(message, chat_history, max_new_tokens):
instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'."
final_prompt = f"Instruction: {instruction}\n"
for sent, received in chat_history:
final_prompt += "User: " + sent + "\n"
final_prompt += "Assistant: " + received + "\n"
final_prompt += "User: " + message + "\n"
final_prompt += "Output:"
# Streamer
streamer = TextIteratorStreamer(
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0
)
thread = Thread(
target=phi2,
kwargs={
"text_inputs": final_prompt,
"max_new_tokens": max_new_tokens,
"streamer": streamer,
},
)
thread.start()
generated_text = ""
for word in streamer:
generated_text += word
response = generated_text.strip()
if "User:" in response:
response = response.split("User:")[0].strip()
if "Assistant:" in response:
response = response.split("Assistant:")[1].strip()
yield response
# Chat interface with gradio
with gr.Blocks() as demo:
gr.Markdown(
"""
# Jivus AI Chatbot Demo
This chatbot was created using Llama 3 billion parameter Transformer model.
"""
)
tokens_slider = gr.Slider(
8,
512,
value=256,
label="Maximum new tokens",
info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.",
)
chatbot = gr.ChatInterface(
fn=generate,
additional_inputs=[tokens_slider],
stop_btn=None,
examples=[["Who is Leonhard Euler?"]],
)
demo.queue().launch()