Spaces:
Runtime error
Runtime error
Mikhil-jivus
commited on
Commit
•
00a2ac7
1
Parent(s):
432a144
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ import torch
|
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
10 |
|
|
|
|
|
11 |
|
12 |
DESCRIPTION = """\
|
13 |
# Llama 3.2 3B Instruct
|
@@ -18,10 +20,9 @@ For more details, please check [our post](https://huggingface.co/blog/llama32).
|
|
18 |
|
19 |
# Access token for the model (if required)
|
20 |
access_token = os.getenv('HF_TOKEN')
|
21 |
-
|
22 |
# Download the Base model
|
23 |
#model_id = "./models/Llama-32-3B-Instruct"
|
24 |
-
model_id = "Mikhil-jivus/Llama-32-
|
25 |
MAX_MAX_NEW_TOKENS = 2048
|
26 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
27 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
@@ -29,15 +30,14 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
29 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
30 |
|
31 |
#model_id = "nltpt/Llama-3.2-3B-Instruct"
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
33 |
tokenizer.padding_side = 'right'
|
34 |
-
tokenizer.
|
35 |
-
tokenizer.pad_token = "<|finetune_right_pad_id|>"
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
model_id,
|
38 |
-
device_map=
|
39 |
torch_dtype=torch.bfloat16,
|
40 |
-
|
41 |
)
|
42 |
model.eval()
|
43 |
|
@@ -63,15 +63,26 @@ def generate(
|
|
63 |
)
|
64 |
conversation.append({"role": "user", "content": message})
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
68 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
69 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
|
|
|
|
70 |
input_ids = input_ids.to(model.device)
|
|
|
|
|
|
|
71 |
|
72 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
73 |
generate_kwargs = dict(
|
74 |
-
|
75 |
streamer=streamer,
|
76 |
max_new_tokens=max_new_tokens,
|
77 |
do_sample=True,
|
@@ -79,7 +90,7 @@ def generate(
|
|
79 |
top_k=top_k,
|
80 |
temperature=temperature,
|
81 |
num_beams=1,
|
82 |
-
repetition_penalty=repetition_penalty
|
83 |
)
|
84 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
85 |
t.start()
|
|
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
10 |
|
11 |
+
# Set the environment variable
|
12 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
# Llama 3.2 3B Instruct
|
|
|
20 |
|
21 |
# Access token for the model (if required)
|
22 |
access_token = os.getenv('HF_TOKEN')
|
|
|
23 |
# Download the Base model
|
24 |
#model_id = "./models/Llama-32-3B-Instruct"
|
25 |
+
model_id = "Mikhil-jivus/Llama-32-3B-FineTuned-Instruct-v4"
|
26 |
MAX_MAX_NEW_TOKENS = 2048
|
27 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
28 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
31 |
|
32 |
#model_id = "nltpt/Llama-3.2-3B-Instruct"
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
34 |
tokenizer.padding_side = 'right'
|
35 |
+
tokenizer.pad_token = tokenizer.eos_token
|
|
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
model_id,
|
38 |
+
device_map=device,
|
39 |
torch_dtype=torch.bfloat16,
|
40 |
+
local_files_only = True
|
41 |
)
|
42 |
model.eval()
|
43 |
|
|
|
63 |
)
|
64 |
conversation.append({"role": "user", "content": message})
|
65 |
|
66 |
+
# Set pad_token_id if it's not already set
|
67 |
+
if tokenizer.pad_token_id is None:
|
68 |
+
tokenizer.padding_side = 'right'
|
69 |
+
tokenizer.pad_token = tokenizer.eos_token
|
70 |
+
|
71 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,add_special_tokens=True, return_tensors="pt",padding=True ,return_attention_mask=True)
|
72 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
73 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
74 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
75 |
+
# Ensure attention mask is set
|
76 |
+
#attention_mask = input_ids['attention_mask']
|
77 |
+
|
78 |
input_ids = input_ids.to(model.device)
|
79 |
+
#attention_mask = attention_mask.to(model.device)
|
80 |
+
|
81 |
+
|
82 |
|
83 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
84 |
generate_kwargs = dict(
|
85 |
+
input_ids=input_ids,
|
86 |
streamer=streamer,
|
87 |
max_new_tokens=max_new_tokens,
|
88 |
do_sample=True,
|
|
|
90 |
top_k=top_k,
|
91 |
temperature=temperature,
|
92 |
num_beams=1,
|
93 |
+
repetition_penalty=repetition_penalty
|
94 |
)
|
95 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
96 |
t.start()
|