Spaces:
Runtime error
Runtime error
Mikhil-jivus
commited on
Commit
•
e3f498d
1
Parent(s):
b17ecc2
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,14 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
repo_id = "Mikhil-jivus/Llama-32-3B-FineTuned"
|
10 |
-
|
11 |
-
# Load the tokenizer and model from the Hugging Face repository
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(repo_id, token=access_token)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
token=access_token,
|
17 |
-
torch_dtype=torch.bfloat16, # or use torch.bfloat16 if supported
|
18 |
-
device_map="auto" # Automatically use available GPU/CPU efficiently
|
19 |
-
)
|
20 |
|
21 |
-
# Define a function to clean up any repeated segments in the generated response
|
22 |
-
def clean_response(response, history):
|
23 |
-
# Check for repetition in the response and remove it
|
24 |
-
if len(history) > 0:
|
25 |
-
last_user_message, last_bot_response = history[-1]
|
26 |
-
if last_bot_response in response:
|
27 |
-
response = response.replace(last_bot_response, "").strip()
|
28 |
-
|
29 |
-
return response
|
30 |
|
31 |
def respond(
|
32 |
message,
|
@@ -36,52 +18,37 @@ def respond(
|
|
36 |
temperature,
|
37 |
top_p,
|
38 |
):
|
39 |
-
|
40 |
-
if len(history) == 0:
|
41 |
-
input_text = f"system: {system_message}\nuser: {message}\n"
|
42 |
-
else:
|
43 |
-
input_text = f"user: {message}\n"
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
# Generate a response
|
59 |
-
chat_history_ids = model.generate(
|
60 |
-
input_ids,
|
61 |
-
max_new_tokens=max_tokens,
|
62 |
temperature=temperature,
|
63 |
top_p=top_p,
|
64 |
-
|
65 |
-
|
66 |
-
attention_mask=attention_mask,
|
67 |
-
)
|
68 |
-
|
69 |
-
# Decode the response
|
70 |
-
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# Update history with the new user message and bot response
|
76 |
-
history.append((message, response))
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
demo = gr.ChatInterface(
|
82 |
respond,
|
83 |
additional_inputs=[
|
84 |
-
gr.Textbox(value="You are a
|
85 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
86 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
87 |
gr.Slider(
|
@@ -94,5 +61,6 @@ demo = gr.ChatInterface(
|
|
94 |
],
|
95 |
)
|
96 |
|
|
|
97 |
if __name__ == "__main__":
|
98 |
-
demo.launch(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
"""
|
6 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
+
"""
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
access_token = os.getenv('HF_TOKEN')
|
10 |
+
client = InferenceClient("Mikhil-jivus/Llama-32-3B-FineTuned",api_key = access_token)
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def respond(
|
14 |
message,
|
|
|
18 |
temperature,
|
19 |
top_p,
|
20 |
):
|
21 |
+
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
for val in history:
|
24 |
+
if val[0]:
|
25 |
+
messages.append({"role": "user", "content": val[0]})
|
26 |
+
if val[1]:
|
27 |
+
messages.append({"role": "assistant", "content": val[1]})
|
28 |
|
29 |
+
messages.append({"role": "user", "content": message})
|
30 |
+
|
31 |
+
response = ""
|
32 |
+
|
33 |
+
for message in client.chat_completion(
|
34 |
+
messages,
|
35 |
+
max_tokens=max_tokens,
|
36 |
+
stream=True,
|
|
|
|
|
|
|
|
|
|
|
37 |
temperature=temperature,
|
38 |
top_p=top_p,
|
39 |
+
):
|
40 |
+
token = message.choices[0].delta.content
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
response += token
|
43 |
+
yield response
|
|
|
|
|
|
|
44 |
|
45 |
+
"""
|
46 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
47 |
+
"""
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
50 |
additional_inputs=[
|
51 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
52 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
53 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
gr.Slider(
|
|
|
61 |
],
|
62 |
)
|
63 |
|
64 |
+
|
65 |
if __name__ == "__main__":
|
66 |
+
demo.launch()
|