import os import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM access_token = os.getenv('HF_TOKEN') # Define the repository ID and access token repo_id = "Mikhil-jivus/Llama-32-3B-FineTuned" # Load the tokenizer and model from the Hugging Face repository tokenizer = AutoTokenizer.from_pretrained(repo_id, token=access_token) model = AutoModelForCausalLM.from_pretrained( repo_id, token=access_token, torch_dtype=torch.bfloat16, # or use torch.bfloat16 if supported device_map="auto" # Automatically use available GPU/CPU efficiently ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Tokenize the input messages input_text = system_message + " ".join([f"{msg['role']}: {msg['content']}" for msg in messages]) input_ids = tokenizer.encode(input_text, return_tensors="pt") # Move input_ids to the GPU input_ids = input_ids.to("cuda") # Create attention mask and move to GPU attention_mask = input_ids.ne(tokenizer.pad_token_id).long().to("cuda") # Generate a response chat_history_ids = model.generate( input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, do_sample=True, attention_mask=attention_mask, ) # Decode the response response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(share=True)