import os import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM access_token = os.getenv('HF_TOKEN') # Define the repository ID and access token repo_id = "Mikhil-jivus/Llama-32-3B-FineTuned" # Load the tokenizer and model from the Hugging Face repository tokenizer = AutoTokenizer.from_pretrained(repo_id, token=access_token) model = AutoModelForCausalLM.from_pretrained( repo_id, token=access_token, torch_dtype=torch.bfloat16, # or use torch.bfloat16 if supported device_map="auto" # Automatically use available GPU/CPU efficiently ) # Define a function to clean up any repeated segments in the generated response def clean_response(response, history): # Check for repetition in the response and remove it if len(history) > 0: last_user_message, last_bot_response = history[-1] if last_bot_response in response: response = response.replace(last_bot_response, "").strip() return response def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Add system prompt only once at the beginning of the conversation if len(history) == 0: input_text = f"system: {system_message}\nuser: {message}\n" else: input_text = f"user: {message}\n" # Append previous conversation history to the input text for user_msg, bot_msg in history: input_text += f"user: {user_msg}\nassistant: {bot_msg}\n" # Tokenize the input messages input_ids = tokenizer.encode(input_text, return_tensors="pt") # Move input_ids to the GPU input_ids = input_ids.to("cuda") # Create attention mask and move to GPU attention_mask = input_ids.ne(tokenizer.pad_token_id).long().to("cuda") # Generate a response chat_history_ids = model.generate( input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, do_sample=True, attention_mask=attention_mask, ) # Decode the response response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) # Clean the response to remove any repeated or unnecessary text response = clean_response(response, history) # Update history with the new user message and bot response history.append((message, response)) return response # Set up the Gradio app interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(share=True)