Spaces:
Build error
Build error
File size: 21,810 Bytes
ca663e1 b3ecaa7 ca663e1 b3ecaa7 e48d543 b3ecaa7 b748dad a97ba6f b3ecaa7 b748dad e330a04 b748dad ca663e1 8400e75 b748dad e48d543 a97ba6f e48d543 b748dad 8400e75 b748dad e48d543 a97ba6f e48d543 b748dad 8400e75 b748dad 8400e75 e330a04 8400e75 dc4ad9e 8400e75 dc4ad9e 8400e75 b3ecaa7 8400e75 dc4ad9e 8400e75 b748dad ca663e1 b3ecaa7 dc4ad9e b3ecaa7 b748dad 8400e75 dc4ad9e 8400e75 ca663e1 dc4ad9e b3ecaa7 ca663e1 b748dad dc4ad9e b748dad ca663e1 b748dad 54434cf dc4ad9e 54434cf dc4ad9e 54434cf dc4ad9e 54434cf b748dad a97ba6f b748dad ca663e1 b482a79 ca663e1 dc4ad9e ca663e1 dc4ad9e ca663e1 b3ecaa7 dc4ad9e b3ecaa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import time
import pandas as pd
import streamlit as st
from src.configs import ColumnNames, Languages, PreprocessingConfigs, SupportedFiles
from src.preprocessing import PreprocessingPipeline
from src.utils import get_col_indices
from src.wordifier import input_transform, output_transform, wordifier
def docs():
steps_options = list(PreprocessingPipeline.pipeline_components().keys())
with st.expander("Documentation for the Advanced Options"):
component_name = st.selectbox(
"Select a processing step to see docs",
options=[""] + steps_options,
index=1,
format_func=lambda x: x.replace("_", " ").title(),
help="Select a processing step to see the relative documentation",
)
pipe_component = PreprocessingPipeline.pipeline_components().get(component_name)
if pipe_component is not None:
st.help(pipe_component)
def form(df):
st.subheader("Parameters")
with st.form("Wordify form"):
col1, col2, col3 = st.columns(3)
cols = [""] + df.columns.tolist()
text_index, label_index = get_col_indices(cols)
with col1:
label_column = st.selectbox(
"Select label column",
cols,
index=label_index,
help="Select the column containing the labels",
)
with col2:
text_column = st.selectbox(
"Select text column",
cols,
index=text_index,
help="Select the column containing the text",
)
with col3:
language = st.selectbox(
"Select language",
[i.name for i in Languages],
help="""
Select the language of your texts amongst the supported one. If we currently do
not support it, feel free to open an issue
""",
)
with st.expander("Advanced Options"):
disable_preprocessing = st.checkbox("Disable Preprocessing", False)
if not disable_preprocessing:
steps_options = list(PreprocessingPipeline.pipeline_components().keys())
pre_steps = st.multiselect(
"Select pre-lemmatization processing steps (ordered)",
options=steps_options,
default=[
steps_options[i] for i in PreprocessingConfigs.DEFAULT_PRE.value
],
format_func=lambda x: x.replace("_", " ").title(),
help="Select the processing steps to apply before the text is lemmatized",
)
lammatization_options = list(
PreprocessingPipeline.lemmatization_component().keys()
)
lemmatization_step = st.selectbox(
"Select lemmatization",
options=lammatization_options,
index=PreprocessingConfigs.DEFAULT_LEMMA.value,
help="Select lemmatization procedure. This is automatically disabled when the selected language is Chinese or MultiLanguage.",
)
post_steps = st.multiselect(
"Select post-lemmatization processing steps (ordered)",
options=steps_options,
default=[
steps_options[i]
for i in PreprocessingConfigs.DEFAULT_POST.value
],
format_func=lambda x: x.replace("_", " ").title(),
help="Select the processing steps to apply after the text is lemmatized",
)
# Every form must have a submit button.
submitted = st.form_submit_button("Submit")
if submitted:
start_time = time.time()
# warnings about inputs
language_specific_warnings(
pre_steps, post_steps, lemmatization_step, language
)
# preprocess
if not disable_preprocessing:
with st.spinner("Step 1/4: Preprocessing text"):
pipe = PreprocessingPipeline(
language, pre_steps, lemmatization_step, post_steps
)
df = pipe.vaex_process(df, text_column)
else:
with st.spinner(
"Step 1/4: Preprocessing has been disabled - doing nothing"
):
df = df.rename(
columns={text_column: ColumnNames.PROCESSED_TEXT.value}
)
time.sleep(1.2)
# prepare input
with st.spinner("Step 2/4: Preparing inputs"):
input_dict = input_transform(
df[ColumnNames.PROCESSED_TEXT.value], df[label_column]
)
# wordify
with st.spinner("Step 3/4: Wordifying"):
pos, neg = wordifier(**input_dict)
# prepare output
with st.spinner("Step 4/4: Preparing outputs"):
new_df = output_transform(pos, neg)
end_time = time.time()
meta_data = {
"vocab_size": input_dict["X"].shape[1],
"n_instances": input_dict["X"].shape[0],
"vocabulary": pd.DataFrame({"Vocabulary": input_dict["X_names"]}),
"labels": pd.DataFrame({"Labels": input_dict["y_names"]}),
"time": round(end_time - start_time),
}
return new_df, meta_data
def presentation():
st.markdown(
"""
Wordify makes it easy to identify words that discriminate categories in textual data.
It was proposed by Dirk Hovy, Shiri Melumad, and Jeffrey J Inman in
[Wordify: A Tool for Discovering and Differentiating Consumer Vocabularies](https://academic.oup.com/jcr/article/48/3/394/6199426).
:point_left: Start by uploading a file. *Once you upload the file, __Wordify__ will
show an interactive UI*.
"""
)
st.subheader("Quickstart")
st.markdown(
"""
- There is no need to preprocess your text, we will take care of it. However, if you wish to
do so, turn off preprocessing in the `Advanced Settings` in the interactive UI.
- We expect a file with two columns: `label` with the labels and `text` with the texts (the names are case insensitive). If
you provide a file following this naming convention, Wordify will automatically select the
correct columns. However, if you wish to use a different nomenclature, you will be asked to
provide the column names in the interactive UI.
- Maintain a stable connection with the Wordify page until you download the data. If you refresh the page,
a new Wordify session is created and your progress is lost.
- Wordify performances depend on the length of the individual texts in your file. The longer the texts, the higher
the chance that Wordify considers many n-grams. More n-grams means more data to analyse in each run.
We tailored Wordify performance for files of approximately 5'000 lines or 50k n-grams. In such cases we expect a runtime
between 90 seconds and 10 minutes. If your file is big, try to apply a stricter preprocessing of the text in the `Advanced Options` section.
If this is not enough, please do feel free to reach out to us directly so we can help.
"""
)
how_to_use()
how_it_works()
def how_to_use():
with st.expander("How to use Wordify"):
st.subheader("Input format")
st.markdown(
"""
Please note that your file must have a column with the texts and a column with the labels,
for example
"""
)
st.table(
{
"text": ["A review", "Another review", "Yet another one", "etc"],
"label": ["Good", "Bad", "Good", "etc"],
}
)
st.subheader("Output format")
st.markdown(
"""
As a result of the process, you will get a file containing 4 columns:
- `Word`: the n-gram (i.e., a word or a concatenation of words) considered
- `Score`: the wordify score, between 0 and 1, of how important is `Word` to discrimitate `Label`
- `Label`: the label that `Word` is discriminating
- `Correlation`: how `Word` is correlated with `Label` (e.g., "negative" means that if `Word` is present in the text then the label is less likely to be `Label`)
for example
"""
)
st.table(
{
"Word": ["good", "awful", "bad service", "etc"],
"Score": ["0.52", "0.49", "0.35", "etc"],
"Label": ["Good", "Bad", "Good", "etc"],
"Correlation": ["positive", "positive", "negative", "etc"],
}
)
def how_it_works():
table2 = pd.DataFrame(
{
"Text": [
"Spice light wine",
"Wine oak heavy",
"Chardonnay buttery light",
"Wine light cherry",
"Chardonnay wine oak buttery",
],
"Label": [
"Italy",
"United States",
"United States",
"Italy",
"United States",
],
}
)
table3 = pd.DataFrame(
{
"Model": [1, 2, 3, 4],
"Buttery": [0.32, 0, 0, 0],
"Chardonnay": [3.78, 0, 0, 0],
"Cherry": [-2.49, 0, 0, -6.2],
"Heavy": [0, 3.62, 0, 0],
"Light": [-1.72, -4.38, 0, 0],
"Oak": [0, 0, 0, 0],
"Spice": [-2.49, 0, -6.2, 0],
"Wine": [0, 0, 0, 0],
},
dtype=str,
)
table4 = pd.DataFrame(
{
"Coefficient valence": ["positive", "negative"],
"Buttery": [0.25, 0],
"Chardonnay": [0.25, 0],
"Cherry": [0, 0.5],
"Heavy": [0.25, 0],
"Light": [0, 0.5],
"Oak": [0, 0],
"Spice": [0, 0.5],
"Wine": [0, 0],
},
dtype=str,
)
with st.expander("How Wordify works: an illustrative example"):
st.markdown(
f"""
To provide an intuitive example of how Wordify works, imagine we have the following five documents with hypothetical
descriptions of wines from the United States and Italy listed in table 2 (preprocessed to remove noise words).
"""
)
st.caption("Table 2: Descriptions of wines from the USA and Italy.")
st.table(table2)
st.markdown(
"""
Wordify now draws, say, four independent samples from this data, for example: `(1,3,4,5)`, `(1,2,2,4)`, `(1,1,2,3)`, and `(2,3,4,4)`.
We fit an L1-regularized Logistic Regression on each, with the United States as target class. This result in the following sparse
vectors of coefficients reported in table 3 (indicators that are not present in a run are listed as 0 here):
"""
)
st.caption(
"Table 3: Coefficients for frequency of indicators in each of the four runs for US wines."
)
st.table(table3)
st.markdown(
"""
We can now count for each indicator how many times out of the four runs it received a non-zero coefficient (the magnitude does not matter).
We distinguish by positive and negative coefficients, and divide the result by the number of runs (here, four), which yields the final indicators
that are positively and negatively correlated with the US wines.
"""
)
st.caption(
"Table 4: Final set of indicators that are positively versus negatively correlated with US wines."
)
st.table(table4)
st.markdown(
"""
The results of table 4 suggest that a wine is likely to be from the United States if its description contains any of the following words: "buttery",
"chardonnay", or "heavy", and these words are similarly discriminative. In contrast, a wine is likely to not be from the United States if it contains
the words "spice", "light", or "cherry". It is also worth noting that "oak" and "wine", which were present for both Italian and US wines, were ultimately
not selected as discriminative indicators of US wines. Finally, we would conduct an analogous analysis with Italy as the target class to determine which
indicators are most and least discriminative of Italian wines.
"""
)
def faq():
st.subheader("Frequently Asked Questions")
with st.expander("What is Wordify?"):
st.markdown(
"""
__Wordify__ is a way to find out which n-grams (i.e., words and concatenations of words) are most indicative for each of your dependent
variable values.
"""
)
with st.expander("What happens to my data?"):
st.markdown(
"""
Nothing. We never store the data you upload on disk: it is only kept in memory for the
duration of the modeling, and then deleted. We do not retain any copies or traces of
your data.
"""
)
with st.expander("What input formats do you support?"):
st.markdown(
f"""
We currently support {", ".join([i.name for i in SupportedFiles])}.
"""
)
with st.expander("Do I need to preprocess my data?"):
st.markdown(
"""
No, there is no need to preprocess your text, we will take of it.
However, if you wish to do so, turn off preprocessing in the `Advanced
Settings` in the interactive UI.
"""
)
with st.expander("What languages are supported?"):
st.markdown(
f"""
Currently we support: {", ".join([i.name for i in Languages])}.
"""
)
with st.expander("How does it work?"):
st.markdown(
"""
It uses a variant of the Stability Selection algorithm
[(Meinshausen and Bühlmann, 2010)](https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-9868.2010.00740.x)
to fit hundreds of logistic regression models on random subsets of the data, using
different L1 penalties to drive as many of the term coefficients to 0. Any terms that
receive a non-zero coefficient in at least 30% of all model runs can be seen as stable
indicators.
"""
)
with st.expander("What libraries do you use?"):
st.markdown(
"""
We leverage the power of many great libraries in the Python ecosystem:
- `Streamlit`
- `Pandas`
- `Numpy`
- `Spacy`
- `Scikit-learn`
- `Vaex`
"""
)
with st.expander("How much data do I need?"):
st.markdown(
"""
We recommend at least 2000 instances, the more, the better. With fewer instances, the
results are less replicable and reliable.
"""
)
with st.expander("Is there a paper I can cite?"):
st.markdown(
"""
Yes, please! Cite [Wordify: A Tool for Discovering and Differentiating Consumer Vocabularies](https://academic.oup.com/jcr/article/48/3/394/6199426)
```
@article{10.1093/jcr/ucab018,
author = {Hovy, Dirk and Melumad, Shiri and Inman, J Jeffrey},
title = "{Wordify: A Tool for Discovering and Differentiating Consumer Vocabularies}",
journal = {Journal of Consumer Research},
volume = {48},
number = {3},
pages = {394-414},
year = {2021},
month = {03},
abstract = "{This work describes and illustrates a free and easy-to-use online text-analysis tool for understanding how consumer word use varies across contexts. The tool, Wordify, uses randomized logistic regression (RLR) to identify the words that best discriminate texts drawn from different pre-classified corpora, such as posts written by men versus women, or texts containing mostly negative versus positive valence. We present illustrative examples to show how the tool can be used for such diverse purposes as (1) uncovering the distinctive vocabularies that consumers use when writing reviews on smartphones versus PCs, (2) discovering how the words used in Tweets differ between presumed supporters and opponents of a controversial ad, and (3) expanding the dictionaries of dictionary-based sentiment-measurement tools. We show empirically that Wordify’s RLR algorithm performs better at discriminating vocabularies than support vector machines and chi-square selectors, while offering significant advantages in computing time. A discussion is also provided on the use of Wordify in conjunction with other text-analysis tools, such as probabilistic topic modeling and sentiment analysis, to gain more profound knowledge of the role of language in consumer behavior.}",
issn = {0093-5301},
doi = {10.1093/jcr/ucab018},
url = {https://doi.org/10.1093/jcr/ucab018},
eprint = {https://academic.oup.com/jcr/article-pdf/48/3/394/40853499/ucab018.pdf},
}
```
"""
)
with st.expander("How can I reach out to the Wordify team?"):
st.markdown(contacts(), unsafe_allow_html=True)
def footer():
st.sidebar.markdown(
"""
<span style="font-size: 0.75em">Built with ♥ by [`Pietro Lesci`](https://pietrolesci.github.io/) and [`MilaNLP`](https://twitter.com/MilaNLProc?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor).</span>
""",
unsafe_allow_html=True,
)
def contacts():
return """
You can reach out to us via email, phone, or via mail
- :email: wordify@unibocconi.it
- :telephone_receiver: +39 02 5836 2604
- :postbox: Via Röntgen n. 1, Milan 20136 (ITALY)
<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d2798.949796165441!2d9.185730115812493!3d45.450667779100726!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x4786c405ae6543c9%3A0xf2bb2313b36af88c!2sVia%20Guglielmo%20R%C3%B6ntgen%2C%201%2C%2020136%20Milano%20MI!5e0!3m2!1sit!2sit!4v1569325279433!5m2!1sit!2sit" frameborder="0" style="border:0; width: 100%; height: 312px;" allowfullscreen></iframe>
"""
def analysis(outputs):
df, meta_data = outputs
st.subheader("Results")
st.markdown(
"""
Wordify successfully run and you can now look at the results before downloading the wordified file.
In particular, you can use the slider to filter only those words that have a `Score` above (>=) a certain threshold.
For meaningful results, we suggest keeping the threshold to 0.25.
"""
)
col1, col2 = st.columns([2, 1])
with col1:
threshold = st.slider(
"Select threshold",
min_value=0.0,
max_value=1.0,
step=0.01,
value=0.25,
help="To return everything, select 0.",
)
subset_df = df.loc[df["Score"] >= threshold].reset_index(drop=True)
st.write(subset_df)
with col2:
st.markdown("**Some info about your data**")
st.markdown(
f"""
Your input file contained {meta_data["n_instances"]:,} rows and
Wordify took {meta_data["time"]:,} seconds to run.
The total number of n-grams Wordify considered is {meta_data["vocab_size"]:,}.
With the current selected threshold on the `Score` (>={threshold}) the output contains {subset_df["Word"].nunique():,}
unique n-grams.
"""
)
with st.expander("Vocabulary"):
st.markdown(
"The table below shows all candidate n-grams that Wordify considered"
)
st.write(meta_data["vocabulary"])
with st.expander("Labels"):
st.markdown(
"The table below summarizes the labels that your file contained"
)
st.write(meta_data["labels"])
return subset_df
# warning for Chinese and MultiLanguage
def language_specific_warnings(pre_steps, post_steps, lemmatization_step, language):
if language in ("MultiLanguage", "Chinese") and (
"remove_non_words" in pre_steps or "remove_non_words" in post_steps
):
msg = """
NOTE: for Chinese and MultiLanguage we automatically substitute `remove_non_words` with
`remove_numbers` and `remove_punctuation` to avoid wrong results.
"""
st.info(msg)
msg = "NOTE: for Chinese and MultiLanguage we turn-off lemmatization automatically."
if lemmatization_step == "Spacy lemmatizer (keep stopwords)" and language in (
"MultiLanguage",
"Chinese",
):
st.info(msg)
elif lemmatization_step == "Spacy lemmatizer (remove stopwords)" and language in (
"MultiLanguage",
"Chinese",
):
st.info(
msg
+ " However we will still remove stopwords since you selected `Spacy lemmatizer (remove stopwords)`."
)
|