Spaces:
Build error
Build error
import multiprocessing as mp | |
import os | |
import re | |
import string | |
from collections import OrderedDict | |
from typing import Callable, List, Optional, Union | |
import spacy | |
import vaex | |
from pandas.core.frame import DataFrame | |
from pandas.core.series import Series | |
from textacy.preprocessing import make_pipeline, normalize, remove, replace | |
from .configs import Languages | |
# more [here](https://github.com/fastai/fastai/blob/master/fastai/text/core.py#L42) | |
# and [here](https://textacy.readthedocs.io/en/latest/api_reference/preprocessing.html) | |
# fmt: off | |
_re_normalize_acronyms = re.compile(r"(?:[a-zA-Z]\.){2,}") | |
def normalize_acronyms(t: str) -> str: | |
return _re_normalize_acronyms.sub(t.translate(str.maketrans("", "", string.punctuation)).upper(), t) | |
_re_non_word = re.compile(r"[^A-Za-z]+") | |
def remove_non_word(t: str) -> str: | |
"Removes non-words characters and digits from the text using the regex `[^A-Za-z]+`" | |
return _re_non_word.sub(" ", t) | |
_re_space = re.compile(r" {2,}") | |
def normalize_useless_spaces(t: str) -> str: | |
return _re_space.sub(" ", t) | |
_re_rep = re.compile(r"(\S)(\1{2,})") | |
def normalize_repeating_chars(t: str) -> str: | |
def _replace_rep(m): | |
c, cc = m.groups() | |
return c | |
return _re_rep.sub(_replace_rep, t) | |
_re_wrep = re.compile(r"(?:\s|^)(\w+)\s+((?:\1\s+)+)\1(\s|\W|$)") | |
def normalize_repeating_words(t: str) -> str: | |
def _replace_wrep(m): | |
c, cc, e = m.groups() | |
return c | |
return _re_wrep.sub(_replace_wrep, t) | |
_re_remove_numbers = re.compile(r"\d+") | |
def remove_numbers(t: str) -> str: | |
return _re_remove_numbers.sub(" ", t) | |
def lowercase(t: str) -> str: | |
"Lowercases the text" | |
return t.lower() | |
def strip(t: str) -> str: | |
return t.strip() | |
def lemmatize_remove_stopwords(doc: spacy.tokens.doc.Doc) -> str: | |
return " ".join( | |
[t.lemma_ for t in doc if t.lemma_ != "-PRON-" and not t.is_stop] | |
) | |
def remove_stopwords(doc: spacy.tokens.doc.Doc) -> str: | |
return " ".join([t.text for t in doc if not t.is_stop]) | |
def lemmatize_keep_stopwords(doc: spacy.tokens.doc.Doc) -> str: | |
return " ".join([t.lemma_ for t in doc if t.lemma_ != "-PRON-"]) | |
def identity(t): | |
return t | |
# fmt: on | |
class PreprocessingPipeline: | |
def __init__( | |
self, | |
language: str, | |
pre_steps: Optional[List[str]], | |
lemmatization_step: Optional[str], | |
post_steps: Optional[List[str]], | |
): | |
self.language = language | |
self.pre_steps = pre_steps | |
self.lemmatization_step = lemmatization_step | |
self.post_steps = post_steps | |
self.pre = self.make_pipe_component(self.pre_steps, self.language) | |
self.post = self.make_pipe_component(self.post_steps, self.language) | |
self.nlp = self.make_nlp(self.lemmatization_step, self.language) | |
self.lemma = self.make_lemma(self.lemmatization_step, self.language) | |
# def apply_multiproc(fn, series): | |
# with mp.Pool(mp.cpu_count()) as pool: | |
# new_series = pool.map(fn, series) | |
# return new_series | |
def vaex_process(self, df: DataFrame, text_column: str) -> DataFrame: | |
def fn(t): | |
return self.post(self.lemma(self.nlp(self.pre(t)))) | |
vdf = vaex.from_pandas(df) | |
vdf["processed_text"] = vdf.apply( | |
fn, arguments=[vdf[text_column]], vectorize=False | |
) | |
df = vdf.to_pandas_df() | |
return df | |
# def __call__(self, series: Series) -> Series: | |
# if self.pre: | |
# series = series.map(self.pre) | |
# if self.lemma: | |
# total_steps = len(series) // 100 | |
# res = [] | |
# pbar = st.progress(0) | |
# for i, doc in enumerate( | |
# self.nlp.pipe(series, batch_size=500, n_process=os.cpu_count()) | |
# ): | |
# res.append(self.lemma(doc)) | |
# if i % total_steps == 0: | |
# pbar.progress(1) | |
# series = pd.Series(res) | |
# if self.post: | |
# series = series.map(self.post) | |
# return series | |
def make_pipe_component(cls, steps: Optional[List[str]], language: str) -> Callable: | |
if not steps: | |
return identity | |
elif language in ("MultiLanguage", "Chinese") and "remove_non_words" in steps: | |
idx = steps.index("remove_non_words") | |
steps = ( | |
steps[:idx] | |
+ ["remove_numbers", "remove_punctuation"] | |
+ steps[idx + 1 :] | |
) | |
components = [cls.pipeline_components()[step] for step in steps] | |
return make_pipeline(*components) | |
def make_nlp( | |
lemmatization_step: Optional[str], language: str | |
) -> Union[spacy.language.Language, Callable]: | |
if ( | |
lemmatization_step is None | |
or lemmatization_step == "Disable lemmatizer" | |
or ( | |
lemmatization_step == "Spacy lemmatizer (keep stopwords)" | |
and language in ("MultiLanguage", "Chinese") | |
) | |
): | |
return identity | |
return spacy.load(Languages[language].value, disable=["parser", "ner"]) | |
def make_lemma(cls, lemmatization_step: Optional[str], language: str) -> Callable: | |
if ( | |
lemmatization_step is None | |
or lemmatization_step == "Disable lemmatizer" | |
or ( | |
lemmatization_step == "Spacy lemmatizer (keep stopwords)" | |
and language in ("MultiLanguage", "Chinese") | |
) | |
): | |
return identity | |
elif ( | |
lemmatization_step == "Spacy lemmatizer (remove stopwords)" | |
and language in ("MultiLanguage", "Chinese") | |
): | |
return cls.lemmatization_component().get("Remove stopwords") | |
return cls.lemmatization_component().get(lemmatization_step) | |
def pipeline_components() -> "OrderedDict[str, Callable]": | |
"""Returns available cleaning steps in order""" | |
return OrderedDict( | |
[ | |
("lowercase", lowercase), | |
("normalize_unicode", normalize.unicode), | |
("normalize_bullet_points", normalize.bullet_points), | |
("normalize_hyphenated_words", normalize.hyphenated_words), | |
("normalize_quotation_marks", normalize.quotation_marks), | |
("normalize_whitespaces", normalize.whitespace), | |
("replace_urls", replace.urls), | |
("replace_currency_symbols", replace.currency_symbols), | |
("replace_emails", replace.emails), | |
("replace_emojis", replace.emojis), | |
("replace_hashtags", replace.hashtags), | |
("replace_numbers", replace.numbers), | |
("replace_phone_numbers", replace.phone_numbers), | |
("replace_user_handles", replace.user_handles), | |
("normalize_acronyms", normalize_acronyms), | |
("remove_accents", remove.accents), | |
("remove_brackets", remove.brackets), | |
("remove_html_tags", remove.html_tags), | |
("remove_punctuation", remove.punctuation), | |
("remove_non_words", remove_non_word), | |
("remove_numbers", remove_numbers), | |
("normalize_useless_spaces", normalize_useless_spaces), | |
("normalize_repeating_chars", normalize_repeating_chars), | |
("normalize_repeating_words", normalize_repeating_words), | |
("strip", strip), | |
] | |
) | |
def lemmatization_component() -> "OrderedDict[str, Optional[Callable]]": | |
return OrderedDict( | |
[ | |
("Spacy lemmatizer (keep stopwords)", lemmatize_keep_stopwords), | |
("Spacy lemmatizer (remove stopwords)", lemmatize_remove_stopwords), | |
("Disable lemmatizer", identity), | |
("Remove stopwords", remove_stopwords), | |
] | |
) | |